Programming Guide

Agilent Technologies
E8257D/67D PSG Signal Generators

This guide applies to the following signal generator models:
E8257D PSG Analog Signal Generator
EB8267D PSG Vector Signal Generator

Due to our continuing efforts to improve our products through firmware and hardware revisions, signal generator design and
operation may vary from descriptions in this guide. We recommend that you use the latest revision of this guide to ensure
you have up-to-date product information. Compare the print date of this guide (see bottom of page) with the latest revision,
which can be downloaded from the following website:

http://www.agilent.com/find/psg

‘..'.: :- Agilent Technologies

Manufacturing Part Number: E8251-90355
Printed in USA
August 2005

© Copyright 2004, 2005 Agilent Technologies, Inc..

Notice

The material in this document is provided “as is,” and is subject to change without notice in future
editions.

Further, to the maximum extent permitted by applicable law, Agilent disclaims all warranties, either
express or implied with regard to this manual and to any of the Agilent products to which it
pertains, including but not limited to the implied warranties of merchantability and fitness for a
particular purpose. Agilent shall not be liable for errors or for incidental or consequential damages in
connection with the furnishing, use, or performance of this document or any of the Agilent products
to which it pertains. Should Agilent have a written contract with the User and should any of the
contract terms conflict with these terms, the contract terms shall control.

Questions or Comments about our Documentation?

We welcome any questions or comments you may have about our documentation. Please send us an
E-mail at sources_manuals@am.exch.agilent.com.

ii Update BookName Variable...

Contents

1 Getting Started o 1
Introduction to Remote Operationttt e e 1
L= o= 2
IO LibrariEs . . o 3
Adilent IO Libraries SUIte. e 3
WINAOWS N T .« e e e e e e e 3
Programming LanguUageottt 5
USING GPIB .ottt 5
1. Instalingthe GPIB Interface Cardttt e e 5

2. Selecting 1O Librariesfor GPIBo 6
3. Setting Upthe GPIB INterfaceo vv it e et et 7
4. Verifying GPIB FUNCHONalityottt et e e 7
GPIB Interface TEaIMS oot e e e e e e e e e 8
GPIB FUNCLON StatemMentsttt e e e e 8
USING LAN Lo 12
Selecting lO Librariesfor LAN e 12
SettingUpthe LAN Interface. oo e e e 13
Verifying LAN FuNnctionality e 14
USING VXI-0d oo e e 17
USINg SOCKELS LAN . .ottt e e 18
USiNg TEINEt LAN .o e e e e 18
USING T P o e e 22
USING RS 232 . . oottt 23
1. Selecting IO Librariesfor RS-232ot 24
2. Setting Upthe RS-232 Interface. oot 24
3. Verifying RS-232 Functionality e 25
Character Format Parametersot 26

If YouHave Problems. 26
Communicating with the Signal Generator UsingaWeb Browserccovvun... 27
B O MBSSagES ottt et 29
Error Message Fileo 29
ErrOr MESSage Ty DS, .« o v ot ottt et e e e e e 29

2. Programming EXamples 31
Using the Programming EXampleso e e 31
Programming Examples Development Environment i 32
Running C/C++ Programming EXamples i 32

Contents

Running Visual Basic 6.0® Programming Examplesc.cooiiiiinininennnn. 33
Running C# Programming EXamples e 33
GPIB Programming EXamples. oot e 34
Before Using the EXamples oot 34
Interface Check using Agilent BASICo 35
Interface Check Using NI-488.2and C++t a s 36
Interface Check using VISA and C. oot e e e 37
Local Lockout Using Agilent BASIC. . ..ot 38
Local Lockout Using NI-488.2and CH++ottt e et 39
QueriesUsing AgIlent BASIC i e 40
QueriesUsing NI-488.2and CHt. . ..o e e e 41
QueriesUsINg VISA and C. . ..o ot e e 43
SettingaCW Signal Using VISA and Co 45
Generating an Externally Applied AC-Coupled FM Signal UsingVISAandC.............. 47
Generating an Internal AC-Coupled FM Signal UsingVISAandC....................... 49
Generating a Step-Swept Signal UsingVISA and C 50
Saving and Recalling StatesUsing VISA and C e 52
Reading the Data Questionable Status Register UsingVISAandC 54
Reading the Service Request Interrupt (SRQ) UsingVISAandC........... ...t 57
Using 8757D Pass-Thru COmMmMaNdS.ot i et e et e e e e e e s 60
LAN Programming EXamples o i e e 63
Before Usingthe EXamples oo e 63
VXI-1T1TLAN Programmingo o e e e e e e e e e e e e e e e e 63
Sockets LAN Programming using Co vttt it e et 64
Sockets LAN Programming USINGPERL o 86
Sockets LAN Programming USiNg Javaot 87
RS-232 Programming EXamplesot 89
Before Usingthe EXamples i e 89
Interface Check Using Agilent BASIC e 89
Interface Check USiNg VISA and Cot e e 90
QueriesUsing AgIlent BASIC 92
QueriesUsINg VISA and C. . ..o e 93
3. Programming the Status Register System i e e 95
LY = 95
Status Register Bit ValUES oo e 99
Accessing Status Register Information e 99
Determining What t0 MONITOrottt e et et et 100

Contents

Deciding HOW 1O MONItOr oot e et ettt e 100
Status Register SCPI Commandso 102
SAUS BYLE GrOUP. . . v ettt e e e e e e e e e 104
SatUS Byt REGIS Oot 105
Service Request Enable Register. i 105
SHBEUS GrOUPS .« o v ot ettt et e et e e e e e 106
Standard EVENt StatUS GIOUD vttt ettt e e et ettt 106
Standard Operation SLAIUS GIOUP« o vttt et e e e et et e e e 108
Baseband Operation StatuUS GrOUD . .« .ottt e e et et et ettt et 112
Data Questionable StatUS GrOUP oottt et e e et et et e 115
Data Questionable POwer StAUS GIOUD v v i e et et et e e e e 118
Data Questionable Frequency StatuS GroUP . .« v v v vt e et e e et 121
Data Questionable Modulation StatuS GrOUP oo vt ittt e e 124
Data Questionable Calibration StatuS Group oo vt it e 127

4. Creating and Downloading Waveform Files i i 131
L0 Y= = P 131
Waveform Data ReqUIrements oot e 132
Understanding Waveform Data.o ot 132
BItS AN By ESottt 132
LSB and MSB (Bit Order)ttt e e 133
Little Endian and Big Endian (Byte Order) 134
Byt SWaDING . o .ottt 135
DAC INPUE ValUBS e e e e 135
2sComplement DataFormatot 138
land Q INterlEaVving.o oot e 138
Waveform SITUCIUNE oo e 139
File Header . ..o 140
Marker File .. 140
O Rl oo 141
AV oI . . 141
Waveform Phase CONtinuUItyottt e et 142
Phase Discontinuity, Distortion, and Spectral Regrowth, 142
Avoiding Phase DiSCONtiNUItIES. oot e 143
WaVEfOrM M BIMIOTY . . o . et ettt e e e e e e e et e 144
Memory ALLOCATION 145
MEMONY SIZE. . ottt et e e e e e e e 146
Commands for Downloading and Extracting WaveformData.cuu.. 146

Contents

Waveform Data ENCryption oo 146
File Transfer Methods.o e 147
SCPI Command LiNe SITUCLUNE oo oot e e e e 147
Commands and File Paths for Downloading and Extracting WaveformData. 148
FTP ProCeOUIES.ottt e e e e e e e e e e e 150
Creating Waveform Dataottt 152
Code Algorithm e 152
Downloading Waveform Datao ot 157
Using SIMUIEtion SOftWare.ottt e e e 158
Using Advanced Programming Languageso v it it e 160
Loading, Playing, and Verifying a Downloaded Waveform. 164
Loading aFilefrom Non-Volatile Memory ...t 164
Playing the Waveform. 164
Verifyingthe Waveform 165
Usingthe Download UtIHtIes. e e e e 166
Downloading E443xB Signal Generator Files 166
E443XB DalaFOrmatot 167
Storage Locations for E443xB ARBfiles.o 167
SCPI COMMEBNGS. . . . ottt et e e et e e e e e e e e e e e e 168
Programming EXamples. 169
CH++ Programming EXamplesot e 169
MATLAB Programming EXampleso e 194
Visual Basic Programming EXamples. 200
HP Basic Programming EXamplest 205
Troubleshooting Waveform Files e 214
5. Creating and Downloading User-Data Files. i ... 215
User Bit/Binary FileDataDownloadso 215
Data Requirements and Limitations.ottt e e e 216
Bit and Binary DIreCtOriesottt e e e 216
Selecting Downloaded User Filesasthe TransmittedData, 219
FIR Filter Coefficients DOWNIoads e 219
Data Requirements and Limitations.ttt 219
Downloading FIR Filter Coefficients. e 220
Selecting a Downloaded User FIR Filter asthe ActiveFilter 220
Downloads Directly into Pattern RAM (PRAM)o e 221
Preliminary SEtUDo 221
Data Requirements and Limitations.ottt e e 222

vi

Contents

Downloading in List FOrmMat.ot e e e et 223
Downloading in Block FOrmat i 223
Modulating and Activatingthe Carrier. 224
Viewing a PRAM Waveformo e e 225
Save and Recall Instrument State Files.o 225
Save and Recall Programming Examplet e 226
Download User Flatness CorrectionsUsingC++and VISA i, 235
Data Transfer Troubleshooting.ot e 239
User Bit/Binary FileDownload Problems i e 239
User FIR Filter Coefficient File Download Problems. it 240
Direct PRAM File Download Problems. 240

vii

Contents

viii

1 Getting Started

This chapter provides the following major sections:

« “Introduction to Remote Operation” on page 1
« “Using GPIB” on page 5

e “Using LAN” on page 12

« “Using RS-232" on page 23

¢ “Communicating with the Signal Generator Using a Web Browser” on page 27

e “Error Messages” on page 29

Introduction to Remote Operation

PSG signal generators support the following interfaces:
* General Purpose Interface Bus (GPIB)

¢ Local Area Network (LAN)

* ANSI/EIA232 (RS-232) serial connection

Each of these interfaces, in combination with an IO library and programming language, can be used
to remotely control the signal generator. Figure 1-1 uses the GPIB as an example of the relationships
between the interface, 10 libraries, programming language, and signal generator.

Chapter 1

Getting Started

Introduction to Remote Operation

Figure 1-1 Software/Hardware Layers
Programming Language:
C/C++, Visual BASIC, LabView etc.
VISA
Agilent VISA Nationabllr;a;ruments
. National Instruments
Agilent SICL NI-488.2 Library
Agilent GPIB NI PCI-GFIB
Interface Card Interface Card
Signal Generator
ced10a
Interfaces
GPIB GPIB is used extensively when a dedicated computer is available for remote
control of each instrument or system. Data transfer is fast because the GPIB
handles information in 8-bit bytes. GPIB is physically restricted by the location
and distance between the instrument/system and the computer; cables are limited
to an average length of two meters per device with a total length of 20 meters.
LAN LAN based communication is supported by the signal generator. Data transfer is
fast as the LAN handles packets of data. The distance between a computer and
the signal generator is limited to 100 meters (10BASE-T). The following protocols
can be used to communicate with the signal generator over the LAN:
¢ VXI-11 (Recommended)
* Sockets LAN
¢ Telephone Network (Telnet)
¢ File Transfer Protocol (FTP)
2

Chapter 1

Getting Started
Introduction to Remote Operation

RS-232 RS-232 is a common method used to communicate with a single instrument; its
primary use is to control printers and external disk drives, and connect to a
modem. Communication over RS-232 is much slower than with GPIB or LAN
because data is sent and received one bit at a time. It also requires that certain
parameters, such as baud rate, be matched on both the computer and signal
generator.

1/0 Libraries

An I/0 library is a collection of functions used by a programming language to send instrument
commands and receive instrument data. Before you can communicate and control the signal
generator, you must have an IO library installed on your computer. The Agilent IO libraries are
included with your signal generator or Agilent GPIB interface board, or they can be downloaded from
the Agilent website: http:\\www.agilent.com.

NOTE Agilent I/0 libraries support the VXI-11 standard.

Agilent 10 Libraries Suite

The Agilent I0 Libraries Suite replaces earlier versions of the Agilent 10 Libraries (version M and
earlier) and is supported on all platforms except Windows NT. If you are using the Windows NT
platform, refer to the section on “Windows NT” on page 3.

The Agilent IO Libraries Suite is available on the Automation-Ready CD that is shipped with your
signal generator. The libraries can also be downloaded from the Agilent website:
http:\\www.agilent.com. Once the libraries are loaded, you can use the Agilent Connection Expert,
Interactive 10, or VISA Assistant to configure and communicate with the signal generator over a
variety of I/O interfaces. Follow instructions in the setup wizard to install the libraries on your
computer.

IMPORTANT The VXI-11 SCPI service must be enabled before you can communicate with the signal
generator over the LAN interface. Go to the Utility > GPIB/RS-232 LAN > LAN Services
Setup menu and enable (turn On) the VXI-11 SCPI service.

Refer to the Agilent 10 Libraries Suite Help documentation for details on the features available with
this software.

Windows NT

You must use Agilent 10 Libraries version M or earlier if you have the Windows NT platform. The
libraries can be downloaded from the Agilent website: http:\\www.agilent.com.

NOTE The following sections are specific to Agilent 10 Libraries versions M and earlier and apply
only to the Windows NT platform.

Chapter 1 3

Getting Started
Introduction to Remote Operation

10 Config Program

After installing the Agilent IO Libraries version M or earlier, you can configure the interfaces
available on your computer by using the 10 Config program. This program can setup the interfaces
that you want to use to control the signal generator. The following steps set up the interfaces.

NOTE Install GPIB interface boards before running I0 Config.

1. Run the IO Config program. The program automatically identifies available interfaces.

2. Click on the interface type you want to configure such GPIB in the Available Interface Types text
box.

Click the Configure button. Set the Default Protocol to AUTO.
Click OK to use the default settings.
5. Click OK to exit the I0 Config program.

VISA Assistant

Use can use the VISA Assistant, available with the Agilent 10 Libraries versions M and earlier, to
send commands to the signal generator. If the interface you want to use does not appear in the VISA
Assistant then you must manually configure the interface. See the Manual Configuration section
below. Refer to the VISA Assistant Help menu and the Agilent VISA User’s Manual (available on
Agilent’s website) for more information.

1. Run the VISA Assistant program.

2. Click on the interface you want to use for sending commands to the signal generator.
3. Click the Formatted I/O tab.

4. Select SCPI in the Instr. Lang. section.

You can enter SCPI commands in the text box and send the command using the ViPrintf button.

Manual Configuration

Perform the following steps to manually configure an interface.
1. Run the IO Config Program.
2. Click on GPIB in the Available Interface Types text box.

3. Click the Configure button. Set the Default Protocol to AUTO and then Click OK to use the default
settings.

Click on GPIBO in the Configured Interfaces text box.
Click Edit...

Click the Edit VISA Config... button.

Click the Add device button.

Enter the GPIB address of the signal generator.

© ©® NS ok

Click the OK button in this form and all other forms to exit the IO Config program.

4 Chapter 1

Getting Started
Using GPIB

Programming Language

The programming language is used along with Standard Commands for Programming Instructions
(SCPID) and IO library functions to remotely control the signal generator. Common programming

languages include:!

e C/C++ * Visual Basic® e LabView® * Visual Basic.net®
e Agilent BASIC * PERL e Javall e C#°®
Using GPIB

The GPIB allows instruments to be connected together and controlled by a computer. The GPIB and
its associated interface operations are defined in the ANSI/IEEE Standard 488.1- 1987 and ANSI/IEEE
Standard 488.2-1992. See the IEEE website, http://www.ieee.org, for details on these standards.

1. Installing the GPIB Interface Card

A GPIB interface card must be installed in your computer. Two common GPIB interface cards are the
National Instruments (NI) PCI-GPIB and the Agilent GPIB interface cards. Follow the GPIB interface
card instructions for installing and configuring the card in your computer. The following tables
provide information on interface cards.

Table 1-1 Agilent GPIB Interface Card for PC-Based Systems

Interface Operating 10 Library Languages Backplane/BUS Max IO Buffering
Card System (kB/sec)
Agilent 82341C Windows?® VISA/ SICL C/C++, Visual ISA/EISA, 750 Built-in
for ISA bus 95/98/NT/ Basic, Agilent 16 bit
computers 2000° VEE, Agilent
Basic for
Windows
Agilent 82341D Windows 95 VISA/ SICL C/C++, Visual ISA/EISA, 750 Built-in
Plug&Play for Basic, Agilent 16 bit
PC VEE, Agilent
Basic for
Windows
Agilent 82350A Windows VISA / C/C++, Visual PCI 32 bit 750 Built-in
for PCI bus 95/98/NT/ SICL Basic, Agilent
computers 2000 VEE, Agilent
Basic for
Windows

a.Windows 95, 98, NT and 2000 are registered trademarks of Microsoft Corporation

1. Java is a U.S. trademark of Sun Microsystems, Inc.

Chapter 1 5

Getting Started
Using GPIB

Table 1-2 NI-GPIB Interface Card for PC-Based Systems

Interface Operating 10 Library Languages Backplane/BUS Max IO
Card System
National Windows VISA C/C++, PCI 32 bit 1.5 MB/s
Instrument’s 95/98/2000/ NI-488.212 Visual BASIC,
PCI-GPIB ME/NT LabView
National Windows NT VISA C/C++, PCI 32 bit 1.5 MB/s
Instrument’s NI-488.2 Visual BASIC,
PCI-GPIB+ LabView
a.NI-488.2 is a trademark of National Instruments Corporation
Table 1-3 Agilent-GPIB Interface Card for HP-UX Workstations
Interface Operating 10 Library Languages Backplane/BUS Max IO Buffering
Card System (kB/sec)
Agilent E2071C HP-UX 9x, VISA/ ANSI C, EISA 750 Built-in
HP-UX 10.01 SICL Agilent VEE,
Agilent BASIC,
HP-UX
Agilent E2071D | HP-UX 10.20 VISA/ ANSI C, EISA 750 Built-in
SICL Agilent VEE,
Agilent BASIC,
HP-UX
Agilent E2078A | HP-UX 10.20 VISA/ ANSI C, PCI 750 Built-in
SICL Agilent VEE,

Agilent BASIC,
HP-UX

2. Selecting 10 Libraries for GPIB

The Agilent IO libraries Suite is available on the Automation- Ready CD which was shipped with your
signal generator. In addition, IO libraries are included with your GPIB interface card or can be
downloaded from the National Instruments or Agilent website. The following is a discussion on these

libraries.
VISA

VISA (Virtual Instrument Software Architecture) is an IO library used to develop
10 applications and instrument drivers that comply with industry standards. It is
recommended that the VISA library be used for programming the signal generator.
The NI-VISAO and Agilent VISA libraries are similar implementations of VISA and
have the same commands, syntax, and functions. The differences are in the lower
level IO libraries; NI-488.2 and SICL respectively. Use the Agilent VISA library

with the Agilent GPIB interface card or NI-VISA with the NI PCI-GPIB interface

card.! Refer to “Agilent 10 Libraries Suite” on page 3 for more information on
installing Agilent IO Libraries.

1. NI-VISA is a registered trademark of National Instruments Corporation

Chapter 1

SICL

NI-488.2

Getting Started
Using GPIB

Agilent SICL can be used without the VISA overlay. The SICL functions can be called
from a program. However, if this method is used, executable programs will not be
portableto other hardware platforms. For example, aprogram using SICL functionswill
not run on a computer with NI libraries (PCI-GPIB interface card).

NI-488.2 can be used without the VISA overlay. The NI1-488.2 functions can be called
from a program. However, if this method is used, executable programs will not be
portable to other hardware platforms. For example, a program using NI-488.2 functions
will not run on a computer with Agilent SICL (Agilent GPIB interface card).

3. Setting Up the GPIB Interface
1. Press Utility > GPIB/RS-232 > GPIB Address.

2. Usethe numeric keypad, the arrow keys, or rotate the front panel knob to set the desired address.

The signal generator’s GPIB address is set to 19 at the factory. The acceptable range of addresses
is 0 through 30. Once initialized, the state of the GPIB address is not affected by a signal
generator preset or by a power cycle. Other instruments on the GPIB cannot use the same
address as the signal generator.

3. Pressthe Enter softkey.

4. Connect a GPIB interface cable between the signal generator and the computer. (Refer to Table 1-4 for
cable part numbers.)

Table 1-4 Agilent GPIB Cables

Model

10833A

10833B 10833C 10833D 10833F 10833G

Length

1 meter

2 meters 4 meters .5 meter 6 meters 8 meters

4. Verifying GPIB Functionality

Use the Agilent Connection Expert and the VISA Assistant available with the Agilent 10 Libraries
Suite or the Getting Started Wizard available with the National Instrument IO Library, to verify GPIB
functionality. These utility programs allow you to communicate with the signal generator and verify
its operation over the GPIB interface. Refer to the Help menu available in each utility for information
and instructions on running these programs.

NOTE

If you are using Windows NT refer to the section “Windows NT” on page 3 for information
on running the I0 Config utility.

Chapter 1

Getting Started
Using GPIB

If You Have Problems

1. Verify the signal generator’s address matches that declared in the program (example programsin
Chapter 2 use address 19).

2. Remove all other instruments connected to the GPIB and re-run the program.

3. Verify that the GPIB card’s name or id number matches the GPIB name or id number configured for your
PC.

GPIB Interface Terms

An instrument that is part of a GPIB network is categorized as a listener, talker, or controller,

depending on its current function in the network.

listener A listener is adevice capable of receiving data or commands from other instruments.
Several instruments in the GPIB network can be listeners simultaneously.

talker A talker is adevice capable of transmitting data. To avoid confusion, a GPIB system
alows only one device at atime to be an active talker.

controller A controller, typically a computer, can specify the talker and listeners (including itself)
for an information transfer. Only one device at atime can be an active controller.

GPIB Function Statements

Function statements are the basis for GPIB programming and instrument control. These function
statements combined with SCPI provide management and data communication for the GPIB interface
and the signal generator. This section describes functions used by different IO libraries. Refer to the
NI-488.2 Function Reference Manual for Windows, Agilent Standard Instrument Control Library

. ® - . . .
reference manual, and Microsoft” Visual C++ 6.0 'documentation for more information.

Abort Function

The Agilent BASIC function ABORT and the other listed IO library functions terminate listener/talker
activity on the GPIB and prepare the signal generator to receive a new command from the computer.
Typically, this is an initialization command used to place the GPIB in a known starting condition.

Agilent BASIC VISA NI- 488.2 Agilent SICL

10 ABORT 7 vi Ter m nat e (parameter list) i bstop(int ud) iabort (id)

Agilent BASIC The ABCRT function stops all GPIB activity.

VISA Library In VISA, the viTerminate command requests a VISA session to terminate normal
execution of an asynchronous operation. The parameter list describes the session and
jobid.

1. Microsoft is a registered trademark of Microsoft Corporation.

8 Chapter 1

NI-488.2
Library

SICL

Remote Function

Getting Started
Using GPIB

The NI-488.2 library function aborts any asynchronous read, write, or command
operation that is in progress. The parameter ud is the interface or device
descriptor.

The Agilent SICL function aborts any command currently executing with the
session i d. This function is supported with C/C++ on Windows 3.1 and Series 700
HP-UX.

The Agilent BASIC function REMOTE and the other listed 10 library functions cause the signal
generator to change from local operation to remote operation. In remote operation, the front panel
keys are disabled except for the Local key and the line power switch. Pressing the Local key on the
signal generator front panel restores manual operation.

Agilent BASIC

VISA NI- 488.2 Agilent SICL

10 REMOTE 719

N/A Enabl eRenot e (parameter list) i renote (id)

Agilent BASIC

VISA Library

NI-488.2
Library

SICL

The REMOTE 719 function disables the front panel operation of all keys with the
exception of the Local key.

The VISA library, at thistime, does not have a similar command.

This NI-488.2 library function asserts the Remote Enable (REN) GPIB line. All devices
listed in the parameter list are put into a listen-active state although no indication is
generated by the signal generator. The parameter list describes the interface or device
descriptor.

The Agilent SICL function puts an instrument, identified by the i d parameter, into
remote mode and disables the front panel keys. Pressing the Local key on the
signal generator front panel restores manual operation. The parameter id is the
session identifier.

Local Lockout Function

The Agilent BASIC function LOCAL LOCKQUT and the other listed 10 library functions can be used to
disable the front panel keys including the Local key. With the Local key disabled, only the controller
(or a hard reset of the line power switch) can restore local control.

Agilent BASIC

VISA NI- 488.2 Agilent SICL

10 LOCAL LOCKOUT 719 N/A Set RALS (parameter list) igpibllo (id)

Agilent BASIC

VISA Library

The LOCAL LOCKQUT function disables all front- panel signal generator keys. Return
to local control can occur only with a hard on/off, when the LOCAL command is
sent or if the Preset key is pressed.

The VISA library, at thistime, does not have a similar command.

Chapter 1

Getting Started
Using GPIB

NI-488.2
Library

SICL

Local Function

The NI-488.2 library function places the instrument described in the parameter list in
remote mode by asserting the Remote Enable (REN) GPIB line. The lockout stateis
then set using the Local Lockout (LLO) GPIB message. Local control can be restored
only with the Enablel.ocal NI1-488.2 routine or hard reset. The parameter list describes
the interface or device descriptor.

The Agilent SICL igpibllo function prevents user access to front panel keys
operation. The function puts an instrument, identified by the i d parameter, into
remote mode with local lockout. The parameter i d is the session identifier and
instrument address list.

The Agilent BASIC function LOCAL and the other listed functions cause the signal generator to return
to local control with a fully enabled front panel.

Agilent BASIC

VISA NI- 488.2 Agilent SICL

10 LOCAL 719

N/A ibloc (int ud) i1oc(id)

Agilent BASIC

VISA Library

NI-488.2
Library

SICL

Clear Function

The LOCAL 719 function returns the signal generator to manual operation,
allowing access to the signal generator’s front panel keys.

The VISA library, at thistime, does not have a similar command.

The NI-488.2 library function places the interface in local mode and allows
operation of the signal generator’s front panel keys. The ud parameter in the
parameter list is the interface or device descriptor.

The Agilent SICL function puts the signal generator into local mode, enabling front
panel key operation. The i d parameter identifies the session.

The Agilent BASIC function CLEAR and the other listed IO library functions cause the signal
generator to assume a cleared condition.

Agilent BASIC

VISA NI- 488.2 Agilent SICL

10 CLEAR 719

vi Cl ear (Vi Session vi) ibclr(int ud) iclear (id)

Agilent BASIC

VISA Library

The CLEAR 719 function causes all pending output-parameter operations to be
halted, the parser (interpreter of programming codes) to reset and prepare for a
new programming code, stops any sweep in progress, and continuous sweep to be
turned off.

The VISA library usesthe viClear function. Thisfunction performs an | EEE 488.1 clear
of the signal generator.

10

Chapter 1

NI-488.2
Library

SICL

Output Function

Getting Started
Using GPIB

The NI-488.2 library function sends the GPIB Selected Device Clear (SDC) message
to the device described by ud.

The Agilent SICL function clears a device or interface. The function also discards
data in both the read and write formatted IO buffers. The i d parameter identifies
the session.

The Agilent BASIC IO function QUTPUT and the other listed IO library functions put the signal
generator into a listen mode and prepare it to receive ASCII data, typically SCPI commands.

Agilent BASIC

VISA NI- 488.2 Agilent SICL

10 QUTPUT 719

Vi Printf(paraneter |ist) i bwt(paraneter |ist) iprintf (paraneter |ist)

Agilent BASIC

VISA Library

NI-488.2
Library

SICL

Enter Function

The function OQUTPUT 719 puts the signal generator into remote mode, makes it a
listener, and prepares it to receive data.

The VISA library uses the above function and associated parameter list to output data.

This function formats according to the format string and sends data to the device. The

parameter list describes the session id and data to send.

The NI-488.2 library function addresses the GPIB and writes data to the signal
generator. The parameter list includes the instrument address, session id, and the datato
send.

The Agilent SICL function converts data using the format string. The format string
specifies how the argument is converted before it is output. The function sends the
charactersin the format string directly to the instrument. The parameter list includesthe
instrument address, data buffer to write, and so forth.

The Agilent BASIC function ENTER reads formatted data from the signal generator. Other IO libraries
use similar functions to read data from the signal generator.

Agilent BASIC

VISA NI- 488.2 Agilent SICL

10 ENTER 719;

viScanf (parameter list) ibrd (parameter list) iscanf (parameter list)

Agilent BASIC

VISA Library

The function ENTER 719 puts the signal generator into remote mode, makes it a
talker, and assigns data or status information to a designated variable.

The VISA library uses the viScanf function and an associated parameter list to receive
data. Thisfunction receives data from the instrument, formats it using the format string,
and stores the data in the argument list. The parameter list includes the session id and
string argument.

Chapter 1

11

Getting Started

Using LAN

NI-488.2

Library The NI-488.2 library function addresses the GPIB, reads data bytes from the signal
generator, and stores the data into a specified buffer. The parameter list includes the
instrument address and session id.

SICL The Agilent SICL function reads formatted data, convertsit, and stores the results into
the argument list. The conversion is done using conversion rules for the format string.
The parameter list includes the instrument address, formatted datato read, and so forth.

Using LAN

The signal generator can be remotely programmed via a 10BASE-T LAN interface and LAN-connected
computer using one of several LAN interface protocols. The LAN allows instruments to be connected
together and controlled by a LAN-based computer. LAN and its associated interface operations are
defined in the IEEE 802.2 standard. See the IEEE website for more details.

The signal generator supports the following LAN interface protocols:

¢ VXI-11(VMEbus Extensions for Instrumentation as defined in VXI-11)

¢ Sockets LAN

¢ Telephone Network (Telnet)

¢ File Transfer Protocol (FTP)

VXI- 11 is the best method to use for instrument communication using the LAN interface. Sockets
LAN can be used for general programming using the LAN interface, Telnet is used for interactive, one
command at a time instrument control, and FTP is for file transfer. Refer to “VXI-11 LAN
Programming” on page 63 for more information on the VXI-11 protocol.

NOTE It is recommended that the VXI-11 protocol be used for instrument communication over the
LAN interface.

Selecting IO Libraries for LAN

The Telnet and FTP protocols do not require IO libraries. However, to write programs that control
your signal generator over the LAN interface, an I/O library must be installed on your computer and
the computer configured for instrument control using the LAN interface.

The Agilent IO libraries Suite is available on the Automation- Ready CD which was shipped with your
signal generator. The libraries can also be downloaded from the Agilent website. The following is a
discussion on these libraries.

Agilent 10 Library The Agilent 10 Library is a collection of libraries and includes the SICL and
VISA Libraries. The VISA Library is an IO library used to develop 10 applications
and instrument drivers that comply with industry standards. Use the Agilent VISA
library for programming the signal generator over the LAN interface.

SICL Agilent SICL is a lower level library that is installed along with Agilent VISA.

12 Chapter 1

Getting Started
Using LAN

Setting Up the LAN Interface

For LAN operation, the signal generator must be connected to the LAN, and a valid IP address must
be assigned to the signal generator either manually or by using DHCP (Dynamic Host Configuration
Protocol). Your system administrator can tell you which method to use.

NOTE Verify that the signal generator is connected to the LAN using a 10BASE-T LAN cable.

Manual Configuration
1. Press Utility > GPIB/RS-232 LAN > LAN Setup > Hostname.

NOTE The Hostname softkey is only available when LAN Config Manual DHCP is set to Manual.

2. Use the labeled text softkeys and or numeric keypad to enter the desired hostname. The hostname
can have up to 255 characters.
To erase the current hostname, press Editing Keys > Clear Text.

Press the Enter softkey.
Press LAN Config Manual DHCP to Manual.

5. Press IP Address and enter a desired address.
Use the left and right arrow keys to move the cursor. Use the up and down arrow keys, front
panel knob, or numeric keypad to enter an IP address. To erase the current IP address, press the
Clear Text softkey.

NOTE Toremotely accessthe signal generator from a different LAN subnet, enter the correct subnet mask
and default gateway. See your system administrator for information.

6. Press the Proceed With Reconfiguration softkey and then the Confirm Change (Instrument will Reboot)
softkey.

This action assigns a hostname and IP address (as well as a gateway and subnet mask, if these
have been configured) to the signal generator. The hostname, IP address, gateway and subnet
mask are not affected by an instrument preset or by a power cycle.

DHCP Configuration

DHCP (Dynamic Host Configuration Protocol) is a protocol used to assign a dynamic IP address to
the signal generator. The network server software assigns an available IP address to the signal
generator when the instrument is turned on. Different IP address may be designated at different
times.

1. Press Utility > GPIB/RS-232 LAN > LAN Setup.

NOTE If the DHCP server uses a dynamic domain name service (DNS) to link the hostname with
the assigned IP address, the hostname may be used in place of the IP address. Otherwise,
the hostname is not usable and you may skip steps 2 through 4.

2. Press Hostname.

Chapter 1 13

Getting Started
Using LAN

3. Use the labeled text softkeys and or numeric keypad to enter the desired hostname.
To erase the current hostname, press Editing Keys > Clear Text.

Press the Enter softkey.
Press LAN Config Manual DHCP to select DHCP.

Press the Proceed With Reconfiguration softkey and then the Confirm Change (Instrument will Reboot)
softkey.

This configures the signal generator as a DHCP client. In DHCP mode, the signal generator
requests a new IP address from the DHCP server upon rebooting. You can return to the LAN
Setup menu after rebooting to determine the assigned IP address.

LAN Services Setup

Before you can use the LAN interface to control the signal generator you must enable the protocol
you want to use. The signal generator supports: FTP Server, Web Server, Sockets SCPI, and VXI-11
SCPI protocols.

1. Press Utility > GPIB/RS-232 LAN > LAN Services Setup.
2. Press the softkey for the LAN service (s) you want to enable so that On is selected.

3. Press the Proceed With Reconfiguration softkey and then the Confirm Change (Instrument will Reboot)
softkey.

4. Press the Enter softkey.

This action will configure the signal generator to use the selected LAN protocol.

Verifying LAN Functionality

Verify the communications link between the computer and the signal generator remote file server
using the ping utility. Compare your ping response to those described in Table 1-5.

From a UNIX workstation, type:
pi ng <hostnare or | P address> 64 10

where <host nane or | P address> is your instrument’s name or IP address, 64 is the packet size,
and 10 is the number of packets transmitted. Type man pi ng at the UNIX prompt for details on the
ping command.

From the MS-DOS® Command Prompt or Windows environment, type:1
ping -n 10 <hostnane or |P address>

where <host nane or | P address> is your instrument’s name or IP address and 10 is the number of
echo requests. Type pi ng at the command prompt for details on the ping command.

1. MS-DOS is a registered trademark of Microsoft Corporation

14 Chapter 1

Getting Started
Using LAN

NOTE In DHCP mode, if the DHCP server uses a dynamic domain name service (DNS) to link the
hostname with the assigned IP address, the hostname may be used in place of the IP
address. Otherwise, the hostname is not usable and you must use the IP address to
communicate with the signal generator over the LAN.

Table 1-5 Ping Responses

Normal Response for
UNIX

A normal response to the ping command will be a total of 9 or 10 packets
received with a minimal average round-trip time. The minimal average will be
different from network to network. LAN traffic will cause the round-trip time to
vary widely.

Normal Response for
DOS or Windows

A normal response to the ping command will be a total of 9 or 10 packets
received if 10 echo requests were specified.

Error Messages

If error messages appear, check the command syntax before continuing with
troubleshooting. If the syntax is correct, resolve the error messages using your
network documentation or by consulting your network administrator.

If an unknown host error message appears, try using the IP address instead of the
hostname. Also, verify that the host name and IP address for the signal generator
have been registered by your IT administrator.

Check that the hostname and IP address are correctly entered in the node names
database. To do this, enter t he nsl ookup <host nane> command from the
command prompt.

No Response

If there is no response from a ping, no packets were received. Check that the
typed address or hostname matches the IP address or hostname assigned to the
signal generator in the System Utility > GPIB/RS-232 LAN > LAN Setup menu.

Ping each node along the route between your workstation and the signal
generator, starting with your workstation. If a node doesn’t respond, contact your
IT administrator.

If the signal generator still does not respond to ping, you should suspect a
hardware problem.

Intermittent Response

If you received 1 to 8 packets back, there maybe a problem with the network. In
networks with switches and bridges, the first few pings may be lost until the these
devices ‘learn’ the location of hosts. Also, because the number of packets received
depends on your network traffic and integrity, the number might be different for
your network. Problems of this nature are best resolved by your IT department.

Using Interactive 10

Use the VISA Assistant utility available in the Agilent IO Libraries Suite to verify instrument
communication over the LAN interface. Refer to the section on the “Agilent 10 Libraries Suite” on
page 3 for more information.

The Agilent I0 Libraries Suite is supported on all platforms except Windows NT. If you are using
Windows NT, refer to section below on using the VISA Assistant to verify LAN communication. See
the section on “Windows NT” on page 3 for more information.

Chapter 1

15

Getting Started
Using LAN

NOTE The following sections are specific to Agilent I0 Libraries versions M and earlier and apply
only to the Windows NT platform.

Using VISA Assistant

Use the VISA Assistant, available with the Agilent I0 Library versions M and earlier, to communicate
with the signal generator over the LAN interface. However, you must manually configure the VISA
LAN client. Refer to the Help menu for instructions on configuring and running the VISA Assistant
program.

Run the I0 Config program.

Click on TCPIPO in the Available Interface Types text box.

Click the Configure button. Then Click OK to use the default settings.

Click on TCPIPO in the Configured Interfaces text box.

Click Edit...

Click the Edit VISA Config... button.

Click the Add device button.

Enter the TCPIP address of the signal generator. Leave the Device text box empty.

© ©® NS Ok WD

Click the OK button in this form and all subsequent forms to exit the I0 Config program.

If You Have Problems
1. Verify the signal generator’s IP address is valid and that no other instrument is using the IP
address.

2. Switch between manual LAN configuration and DHCP using the front- panel LAN Config softkey and
run the ping program using the different IP addresses.

NOTE For Agilent IO Libraries versions M and earlier, you must manually configure the VISA LAN
client in the I0 Config program if you want to use the VISA Assistant to verify LAN
configuration. Refer to the I0 Libraries Installation Guide for information on configuring 10
interfaces. The 10 Config program interface is shown in Figure 1-2 on page 17.

16 Chapter 1

Getting Started
Using LAN

Figure 1-2 10 Config Form
5 i elp

*R5-232 COM Ports

WISA LaN Client (2.0, ESS10)
*82350 PCI GPIB Card
82341 154 GPIB Card

82357 USE to GPIB

WISA LaN Client (2.0, ESS10)
GPIB %<l Command Module
“LAM Client [LAM Instruments]
*USE Instruments

WISA LaN Client for USE
*E8491 [EEE-1394 to il
LAM Server [PC as Server]

Check to see that the Default Protocol is set to Automatic.
1. Run the IO Config program

2. Click on TCPIP in the Configured Interfaces text box. If there is no TCPIPO in the box, follow the
steps shown in the section “Using VISA Assistant” on page 16

Click the Edit button.
Click the radio button for AUTO (automatically detect protocol).
Click OK , OK to end the IO Config program.

Using VXI-11

The signal generator supports the VXI-11 protocol for instrument control using the LAN interface.
The VXI-11 protocol is an industry standard, instrument communication protocol, described in the
VXI-11 standard. Refer to the VXIbus Consortium.Inc website at hitp.//www.vxi.org/freepdfdownloads
for more information.

NOTE It is recommended that the VXI-11 protocol be used for instrument communication over the
LAN interface.

The VXI- 11 protocol uses Open Network Computing/Remote Procedure Calls (ONC/RPC) running over
TCP/IP. It is intended to provide GBIB capabilities such as SRQ (Service Request), status byte
reading, and DCAS (Device Clear State) over a LAN interface. The VXI-11 standard allows IEEE 488.2
messages and IEEE 488.1 instrument control messages.

Chapter 1 17

Getting Started
Using LAN

Configuring the Interface

The Agilent 10 Libraries Suite has utilities to help you easily connect to, and communicate with, the
signal generator. Run the Interactive IO utility and VISA Assistant to verify the LAN connection. For
more information, refer to the section describing the “Agilent 10 Libraries Suite” on page 3.

IMPORTANT The VXI-11 SCPI service must be enabled before you can communicate with the signal
generator over the LAN interface. Go to the Utility > GPIB/RS-232 LAN > LAN Services
Setup menu and enable (turn On) the VXI-11 SCPI service.

NOTE If you are using the Windows NT platform, refer to “Windows NT” on page 3 for information
on using Agilent 10 Libraries versions M or earlier to configure the interface.

Using Sockets LAN

Sockets LAN is a method used to communicate with the signal generator over the LAN interface
using the Transmission Control Protocol/ Internet Protocol (TCP/IP). A socket is a fundamental
technology used for computer networking and allows applications to communicate using standard
mechanisms built into network hardware and operating systems. The method accesses a port on the
signal generator from which bidirectional communication with a network computer can be
established.

Sockets LAN can be described as an internet address that combines Internet Protocol (IP) with a
device port number and represents a single connection between two pieces of software. The socket
can be accessed using code libraries packaged with the computer operating system. Two common
versions of socket libraries are the Berkeley Sockets Library for UNIX systems and Winsock for
Microsoft operating systems.

Your signal generator implements a sockets Applications Programming Interface (API) that is
compatible with Berkeley sockets, for UNIX systems, and Winsock for Microsoft systems. The signal
generator is also compatible with other standard sockets APIs. The signal generator can be controlled
using SCPI commands that are output to a socket connection established in your program.

Before you can use sockets LAN, you must select the signal generator’s sockets port number to use:
¢ Standard mode. Available on port 5025. Use this port for simple programming.

¢ Telnet mode. The Telnet SCPI service is available on port 5023.

NOTE The signal generator will accept references to Telnet SCPI service at port 7777 and sockets
SCPI service at port 7778.

An example using sockets LAN is given in Chapter 2 of this programming guide.

Using Telnet LAN

Telnet provides a means of communicating with the signal generator over the LAN. The Telnet client,
run on a LAN connected computer, will create a login session on the signal generator. A connection,
established between computer and signal generator, generates a user interface display screen with
SCPI > prompts on the command line.

18 Chapter 1

Getting Started
Using LAN

Using the Telnet protocol to send commands to the signal generator is similar to communicating with
the signal generator over GPIB. You establish a connection with the signal generator and then send
or receive information using SCPI commands. Communication is interactive: one command at a time.

NOTE The Windows 2000 ®0perating system uses a command prompt style interface for the Telnet
client. Refer to the Figure 1-5 on page 21 for an example of this interface.!

Using Telnet and MS-DOS Command Prompt
1. On your PC, click Start > Programs > Command Prompt.

2. At the command prompt, type in t el net.
3. Press the Enter key. The Telnet display screen will be displayed.
4. Click on the Connect menu then select Remote System. A connection form (Figure 1-3) is displayed.

Connect Form

Figure 1-3

Host Name: IInstrument name El

Port: |5l]23 :]

TermType: [¥IIT] -]
Connect | Cancel |

5. Enter the hostname, port number, and TermType then click Connect.

¢ Host Name—-IP address or hostname
¢ Port-5023
e Term Type—vt100

6. At the SCPI > prompt, enter SCPI commands. Refer to Figure 1-4 on page 20.
To signal device clear, press Ctrl-C on your keyboard.
8. Select Exit from the Connect menu and type exit at the command prompt to end the Telnet

session.

Using Telnet On a PC With a Host/Port Setting Menu GUI
1. On your PC, click Start > Run.

2. Type t el net then click the OK button. The Telnet connection screen will be displayed.

1. Windows 2000 is a registered trademark of Microsoft Corporation.

Chapter 1 19

Getting Started
Using LAN

3. Click on the Connect menu then select Remote System. A connection form is displayed. See Figure
1-3.
4. Enter the hostname, port number, and TermType then click Connect.
¢ Host Name-signal generator’s IP address or hostname
* Port-5023
e Term Type—vt100
At the SCPI > prompt, enter SCPI commands. Refer to Figure 1-4 on page 20.
To signal device clear, press Ctrl-C.
Select Exit from the Connect menu to end the Telnet session.
Figure 1-4 Telnet Window

M Telnet - pvipt HEE
Connect Edt Teimnal Hep

Agilent Technologies, ES25MA SH-USO0000000N

Firmware: Har 28 2001 11:23:18

Hostname: 8081p1

IP : B0 .Aa0 .60 . 000

SCPI>» =IDNHT

Agilent Technologies, ES25hA, USBOOOOO0L, C.071.00
SCPI> =RST

SCPI> POW:AMPL -10 dbm

SCPI> POW?

-1.00000A0GE+001

scr1> i

Using Telnet On Windows 2000

1.
2.

On your PC, click Start > Run.

Type t el net in the run text box, then click the OK button. The Telnet connection screen will be
displayed. See Figure 1-5 on page 21.

Type open at the prompt and then press the Enter key. The prompt will change to (to).

At the (to) prompt, enter the signal generator’s IP address followed by a space and 5023,which is
the Telnet port associated with the signal generator.

At the SCPI > prompt, enter SCPI commands. Refer to commands shown in Figure 1-4 on
page 20.

To escape from the SCPI> session type Ctrl-].
Type quit at the prompt to end the Telnet session.

20

Chapter 1

Getting Started
Using LAN

Figure 1-5 Telnet 2000 Window

;’ C:\WINNT \system32'\telnet.exe

Microsoft CR> Windows 2088 (THM) U
Welcome to Microsoft Telnet Client
Telnet Client Build 5.8@8.99286.1

sion 5.08 (Build 2195>

Ezcape Character iz ‘CTRL+1’

Microsoft Telnet>

The Standard UNIX Telnet Command

Synopsis
tel net [host [port]]

Description

This command is used to communicate with another host using the Telnet protocol. When the
command t el net is invoked with host or port arguments, a connection is opened to the host, and
input is sent from the user to the host.

Options and Parameters

The command t el net operates in character-at-a-time or line-by-line mode. In line-by-line mode,
typed text is echoed to the screen. When the line is completed (by pressing the Enter key), the text
line is sent to host. In character-at-a-time mode, text is echoed to the screen and sent to host as it
is typed. At the UNIX prompt, type man tel net to view the options and parameters available with
the t el net command.

NOTE If your Telnet connection is in line-by-line mode, there is no local echo. This means you
cannot see the characters you are typing until you press the Enter key. To remedy this,
change your Telnet connection to character-by-character mode. Escape out of Telnet, and at
the t el net > prompt, type node char. If this does not work, consult your Telnet program's
documentation.

Unix Telnet Example

To connect to the instrument with host name nyl nstrunent and port number 7778, enter the
following command on the command line: t el net nyl nstrunment 5023

Chapter 1 21

Getting Started
Using LAN

When you connect to the signal generator, the UNIX window will display a welcome message and a
SCPI command prompt. The instrument is now ready to accept your SCPI commands. As you type
SCPI commands, query results appear on the next line. When you are done, break the Telnet
connection using an escape character. For example, Ctrl-],where the control key and the] are
pressed at the same time. The following example shows Telnet commands:

$ telnet nyinstrunent 5023

Trying....

Connected to signal generator

Escape character is ‘"]’

Agi | ent Technol ogi es, E8254A SN-US00000001

Fi rmvar e:

Host nane: your instrunent

I P o XXX, XX, XXX. XXX

SCP| >

Using FTP

FTP allows users to transfer files between the signal generator and any computer connected to the
LAN. For example, you can use FTP to download instrument screen images to a computer. When
logged onto the signal generator with the FTP command, the signal generator’s file structure can be
accessed. Figure 1-6 on page 23 shows the FTP interface and lists the directories in the signal
generator’s user level directory.

The following steps outline a sample FTP session from the MS-DOS Command Prompt:
1. On the PC click Start > Programs > Command Prompt.
2. At the command prompt enter:
ftp <I P address> or <host name>
3. At the User: prompt, press the Enter key.
At the Password: prompt, the Enter key.

You are now in the signal generator’s user directory. Typing help at the command prompt will
show you the FTP commands that are available on your system. Use the cd command to change
to and open a directory in the signal generator where a file is to be stored or retrieved.

You can download files to the signal generator from the directory in your PC where the command
prompt is located by using the put command: put "<file name>".

NOTE File names are limited to 23 characters.

An example of this command might be as follows:

put <file_name> /USER/WAVEFORM/<new_file_name> where <file_name> is the name of the file to
download and <new_file_name> the name of the file that will appear in the signal generator’s
memory.

If you have a marker file associated with the waveform file, use the following command to
download it to the signal generator: put <marker file_name> /USER/MARKERS/<new_file_name>

22 Chapter 1

Getting Started
Using RS-232

NOTE Inthe examples above the waveform and marker files are saved to the signal generator’s

non-volatile (NVWFM) waveform memory. You can save thefilesto volatile (WFM1) memory for

immediate playing by the signal generator by changing the command to:

/USER/BBG1/WAV EFORM for the waveform file and /USER/BBG1/MARKERS for the marker

file. Note that the marker and waveform file have the same file name.

To upload a file from the signal generator to the directory in your PC where the command
prompt is located use the get command: get "<file name>".

NOTE If no marker fileis provided, the signal generator will automatically create a default marker file

initialized with zeros.

5. Type quit or bye to end your FTP session.

6. Type exit to end the command prompt session.

Figure 1-6 FTP Screen

% Command Prompt - ftp 000.000.00.000
<C> Copyrights 1985-1996 Microsoft Corp.

C:\>fip 000.000.00.000

connected to 000.000.00.000.

220- Agilent Technologies. E8254A SN-LIS00000004
220- Firmware: Mar.28.2001 11:23:18
220- Hostname: 0001p1

2z20- 1P : 000.000.00.000

220- FTP server =Version 1.0> readyw.
User <000.000.00.000:<none=>>:

331 Password required

Password:

230 Successful login

fip= 1s

200 Port command successful.

150 Opening data connection.
BACKUP

BIN

CAL

HTML

5YS

USER

226 Transfer complete.

35 bytes received in 0.00 seconds =35000.00 Kbytes/sec>
fip> _

ce917a

Using RS-232

The RS-232 serial interface can be used to communicate with the signal generator. The RS-232
connection is standard on most PCs and can be connected to the signal generator’s rear-panel

AUXILIARY INTERFACE connector using the cable described in Table 1-6 on page 25. Many functions

Chapter 1

Getting Started
Using RS-232

provided by GPIB, with the exception of indefinite blocks, serial polling, GET, non-SCPI remote
languages, and remote mode are available using the RS-232 interface.

The serial port sends and receives data one bit at a time, therefore RS-232 communication is slow.
The data transmitted and received is usually in ASCII format with SCPI commands being sent to the
signal generator and ASCII data returned.

1. Selecting 10 Libraries for RS-232

The Agilent IO Libraries Suite is available on the Automation-Ready CD that is shipped with your
signal generator. The libraries can also be downloaded from the National Instrument website,
hitp://www.ni.com, or Agilent’s website, http.//www.agilent.com. The following is a discussion on
these libraries.

Agilent BASIC The Agilent BASIC language has an extensive IO library that can be used to
control the signal generator over the RS-232 interface. This library has many low
level functions that can be used in BASIC applications to control the signal
generator over the RS-232 interface.

VISA VISA is an IO library used to develop 10 applications and instrument drivers that
comply with industry standards. It is recommended that the VISA library be used
for programming the signal generator. The NI-VISA and Agilent VISA libraries are
similar implementations of VISA and have the same commands, syntax, and
functions. The differences are in the lower level IO libraries used to communicate
over the RS-232; NI-488.2 and SICL respectively.

NOTE It is recommended that the VX1-11 protocol be used for instrument communication over the
RS-232 interface.

NI-488.2 NI-488.2 10 libraries can be used to develop applications for the RS-232 interface.
See National Instrument’s website for information on NI-488.2.
SICL Agilent SICL can be used to develop applications for the RS-232 interface. See

Agilent’s website for information on SICL.

2. Setting Up the RS-232 Interface
1. Press Utility > GPIB/RS-232 LAN> RS-232 Setup > RS-232 Baud Rate > 9600

Use baud rates 57600 or lower only. Select the signal generator’s baud rate to match the baud
rate of your computer or UNIX workstation or adjust the baud rate settings on your computer to
match the baud rate setting of the signal generator.

NOTE The default baud rate for VISA is 9600. This baud rate can be changed with the
“VI_ATTR_ASRL_BAUD” VISA attribute.

2. Press Utility > GPIB/RS-232 LAN > RS-232 Setup > RS-232 Echo Off On until Off is highlighted.

Set the signal generator’s RS-232 echo. Selecting On echoes or returns characters sent to the
signal generator and prints them to the display.

3. Connect an RS-232 cable from the computer’s serial connector to the signal generator’s
AUXILIARY INTERFACE connector. Refer to Table 1-6 for RS-232 cable information.

24 Chapter 1

Getting Started
Using RS-232

Table 1-6 RS-232 Serial Interface Cable

Quantity Description Agilent Part Number
1 Serial RS-232 cable 9-pin (male) to 9-pin 8120-6188
(female)

NOTE Any 9 pin (male) to 9 pin (female) straight-through cable that directly wires pins 2, 3, 5, 7,
and 8 may be used.

3. Verifying RS-232 Functionality

You can use the HyperTerminal program available on your computer to verify the RS-232 interface
functionality. To run the HyperTerminal program, connect the RS-232 cable between the computer
and the signal generator COM 1 or COM 2 serial ports and perform the following steps:

1. On the PC click Start > Programs > Accessories > HyperTerminal and select HyperTerminal.
2. Enter a name for the session in the text box and select an icon.
3. Select COM1 (COM2 can be used if COMI1 is unavailable), and set the following parameters:
e Bits per second: 9600 must match signal generator’s baud rate; on the signal generator,
press
Utility > GPIB/RS-232 LAN > RS-232 Setup > RS-232 Baud Rate > 9600.
* Data bits: 8
e Parity: None
e Stop bits: 1
¢ Flow Control: None

NOTE Flow control, via the RTS line, is driven by the signal generator. For the purposes of this
verification, the controller (PC) can ignore this if flow control is set to None. However, to
control the signal generator programatically or download files to the signal generator, you
must enable RTS-CTS (hardware) flow control on the controller. Note that only the RTS
line is currently used.

Go to the HyperTerminal window and select File > Properties

Go to Settings > Emulation and select VT100.

Leave the Backscroll buffer lines set to the default value.

Go to Settings > ASCII Setup.

Check the first two boxes and leave the other boxes as default values.

0N o

Once the connection is established, enter the SCPI command *I DN? fol | oned by <Crl j> in the
HyperTerminal window. The <G r| j > is the new line character (on the keyboard press the Cntrl key
and the j key simultaneously). The signal generator should return a string similar to the following,
depending on model: Agilent Technologies <instrument model name and number>,

Us40000001, C. 02. 00

Chapter 1 25

Getting Started
Using RS-232

Character Format Parameters

The signal generator uses the following character format parameters when communicating via RS-232:

Character Length: Eight data bits are used for each character, excluding start, stop, and parity
bits.

Parity Enable: Parity is disabled (absent) for each character.

Stop Bits: One stop bit is included with each character.

If You Have Problems

1.

Verify that the baud rate, parity, and stop bits are the same for the computer and signal
generator.

2. Verify that the RS-232 cable is identical to the cable specified in Table 1-6.

3. Verify that the application is using the correct computer COM port and that the RS-232 cable is
properly connected to that port.

4. Verify that the controller’s flow control is set to RTS-CTS.

5. Press the Reset RS-232 softkey and restart the HyperTerminal application.

26 Chapter 1

Getting Started
Communicating with the Signal Generator Using a Web Browser

Communicating with the Signal Generator Using a Web Browser

The Web Server uses a client/server model
where the client is the web browser on
your PC or workstation and the server is
the signal generator. When you enable the
Web Server, you can access a web page e
that resides on the signal generator.

Agilent Technologies 3 erie ave Signal Generato

Welcome to your
Web-Enabled PSG

B
iea ortral

The web-enabled signal generator web Information about this Web-Enabled PSG:
page, shown at right and page 28, provides | O
_J5CPiTerel

general information on the signal generator, i usueer

il Des gl EGE6TE 1US44(0037)
E
.

I
i)

generator, and a means to control the
P Address: 101.101.101.101
instrument using either a remote [vstrcom comtsie. e

FTP access to files stored on the signal | N

front- panel interface or SCPI commands. [Fmnacrosior 2088
The web page also has links to Agilent’s
products, manuals, support, and website.

L

Ethernet MAC) Address: 00:0020E688D
PITCPIP Socket Port: 023

on;

For additional information on memory ETTN
catalog access (file storing), refer to the ECE T
E8257D/67D Szgnal Generators User’s Use he nevigaicn Ear on 2 ER1o acc2ss your signel Jenereor andrelatzd niormaton.
Guide and *Waveform Memory” on To operate the signal generator, either click keys, or
“ 3 ” ’ ’
page 184 and for FTP, see “Using FTP” on enter SCPI commands and click SEND.

page 22 and “FTP Procedures” on
page 191.

The Web Server service is compatible with
the latest version of the Microsoft©

Internet Explorer web browser.!

AFLITICE

me | ~130.00 we

1. If it is not already enabled, turn on the : w |
Web server: o e TELF (oo i\ e weTLY
a. Press Utility > GPIB/RS-232 LAN >
LAN Services Setup. o el T Rl SRR

b. If necessary, press > Web Server On > i
Proceed With Reconfiguration >
Confirm Change. e— s |

2. Launch the PC or workstation web s —— E|

browser. The results of a SCPI command display on a separate web page titled,

3. In the web browser address field, enter “SCPI Command Processed.” You can continue using this web page to enter
.) . commands or you can return to the front panel web page. If the wel
the signal generator’s IP (1nternét SCPI d he | web If the web

page does not update, use the Web browser Refresh function.
protocol) address. For example,

http://101.101.01.101 (where
101.101.01.101 is the signal generator’s IP address).

The IP address can change depending on the LAN configuration (see “Using LAN” on page 12).

1. Microsoft is a registered trademark of Microsoft Corp.

Chapter 1 27

Getting Started
Communicating with the Signal Generator Using a Web Browser

4. On the computer’s keyboard, press Enter. The web browser displays the signal generator’s

homepage.

5. Click the Signal Generator Web Control menu button on the left of the page. The front panel web

page displays.

To control the signal generator, either
click the front panel keys or enter SCPI
commands.

[—— ST Usd410c87

Agilent Technologies IRERIEREER MR RIERECE S

Welcome to your

Web-Enabled PSG

Information about this Web-Enabled PSG:

Agilent EB267C (US4 C0037)
1P Address; 101.101.101.101
VISATCPIP Connect String: TCFIPO:CEPZ3:INSTR

Ethernet (MAC) Address: 00:20DZ0£5860

Use the nzvigalicn kar on th2 leftto accass you" signel yenerator and relatad nformation

The FTP Access button opens a window to show the folders
containing the signal generator’s memory catalog files.

\J
@ ftp://101.101.101.101/USER/ - Microsoft Internet Explorer

File Edit Wiew Favarites Tools Help
- ;) { -
eBack </ Lﬁ psaarch [} Foldets
\

B B B B

Fai L15T STATE USERFLAT

adderess | fip://101.101.101.101/User/

Other Places

(8] 141.121.92.227
(5 My Documents
& My Network Places

W
u DEUs @ O “'//

28

Chapter 1

Getting Started
Error Messages

Error Messages

If an error condition occurs in the signal generator, it is reported to both the SCPI (remote interface)
error queue and the front panel display error queue. These two queues are viewed and managed
separately; for information on the front panel display error queue, refer to the E8257D/67D Signal
Generators User’s Guide.

When accessing error messages using the SCPI (remote interface) error queue, the error numbers and
the <error_description> portions of the error query response are displayed on the host terminal.

Characteristic SCPI Remote Interface Error Queue

Capacity (#errors) 30

Linear, first-in/first- out.

Overflow Handling Replaces newest error with: - 350, Queue overfl ow

Viewing Entries Use SCPI query SYSTem ERRor [: NEXT] ?
Power up
Clearing the Queue Send a *CLS command

Read last item in the queue

Unresolved Errors® Re-reported after queue is cleared.

When the queue is empty (every error in the queue has been read, or the queue is cleared), the
No Errors following message appears in the queue:
+0, "No error”

a.Errors that must be resolved. For example, unlock.

Error Message File

A complete list of error messages is provided in the file errormesages.pdf, on the CD-ROM supplied
with your instrument. In the error message list, an explanation is generally included with each error
to further clarify its meaning. The error messages are listed numerically. In cases where there are
multiple listings for the same error number, the messages are in alphabetical order.

Error Message Types

Events do not generate more than one type of error. For example, an event that generates a query
error will not generate a device-specific, execution, or command error.

Query Errors (-499 to -400) indicate that the instrument’s output queue control has detected a
problem with the message exchange protocol described in IEEE 488.2, Chapter 6. Errors in this class
set the query error bit (bit 2) in the event status register (IEEE 488.2, section 11.5.1). These errors
correspond to message exchange protocol errors described in IEEE 488.2) 6.5. In this case:

« Either an attempt is being made to read data from the output queue when no output is either present or
pending, or

« datain the output queue has been lost.

Chapter 1 29

Getting Started
Error Messages

Device Specific Errors (-399 to -300, 201 to 703, and 800 to 810) indicate that a device operation
did not properly complete, possibly due to an abnormal hardware or firmware condition. These codes
are also used for self-test response errors. Errors in this class set the device-specific error bit (bit 3)
in the event status register (IEEE 488.2, section 11.5.1).

The <error_message> string for a positive error is not defined by SCPI. A positive error indicates that
the instrument detected an error within the GPIB system, within the instrument’s firmware or
hardware, during the transfer of block data, or during calibration.

Execution Errors (-299 to -200) indicate that an error has been detected by the instrument’s
execution control block. Errors in this class set the execution error bit (bit 4) in the event status
register (IEEE 488.2, section 11.5.1). In this case:

» Either a<PROGRAM DATA> element following a header was evaluated by the device as outside of its
legal input range or is otherwise inconsistent with the device's capabilities, or

» avalid program message could not be properly executed due to some device condition.

Execution errors are reported after rounding and expression evaluation operations are completed.
Rounding a numeric data element, for example, is not reported as an execution error.

Command Errors (-199 to -100) indicate that the instrument’s parser detected an IEEE 488.2
syntax error. Errors in this class set the command error bit (bit 5) in the event status register (IEEE
488.2, section 11.5.1). In this case:

« Either an |EEE 488.2 syntax error has been detected by the parser (a control-to-device message was
received that isin violation of the | EEE 488.2 standard. Possible violations include a data element that
violates device listening formats or whose type is unacceptable to the device.), or

« anunrecognized header was received. These include incorrect device-specific headers and incorrect or
unimplemented |EEE 488.2 common commands.

30 Chapter 1

2 Programming Examples

This chapter provides the following major sections:
¢ “Using the Programming Examples” on page 31
* “GPIB Programming Examples” on page 34

¢ “LAN Programming Examples” on page 63

e “RS-232 Programming Examples” on page 89

Using the Programming Examples

The programming examples for remote control of the signal generator use the GPIB, LAN, and
RS-232 interfaces and demonstrate instrument control using different I/O libraries and programming
languages. Many of the example programs in this chapter are interactive; the user will be prompted
to perform certain actions or verify signal generator operation or functionality. Example programs are
written in the following languages:

e Agilent BASIC

e C/C++

e Java

e PERL

e Microsoft Visual Basic 6.0
e C#

See Chapter 1 of this programming guide for information on interfaces, I/O libraries, and
programming languages.

NOTE For information on downloading waveform files refer to “Programming Examples for
Generating and Downloading Files” on page 189.

The example programs are also available on the PSG Documentation CD-ROM, enabling you to cut
and paste the examples into a text editor.

NOTE The example programs set the signal generator into remote mode; front panel keys, except
the Local key, are disabled. Press the Local key to revert to manual operation.

NOTE To update the signal generator’s front panel display so that it reflects remote command
setups, enable the remote display: press Utility > Display > Update in Remote Off On softkey until
On is highlighted or send the SCPI command :DISPlay:REMote ON. For faster test execution,
disable front panel updates.

Chapter 2 31

Programming Examples
Using the Programming Examples

Programming Examples Development Environment

The C/C++ examples in this guide were written using an IBM-compatible computer (PC) with the
following configuration:

. ®
* Pentium” processor!

e Windows NT 4.0, and Windows 2000 operating system. Programs for creating and downloading
files to the signal generator were run on a Windows 2000 operating system.

¢ (C/C++ programming language with the Microsoft Visual C++ 6.0 IDE

¢ National Instruments PCI- GPIB interface card or Agilent GPIB interface card. Programs for
creating and downloading files to the signal generator use the LAN interface.

¢ National Instruments VISA Library or Agilent VISA library
¢ (COMI1 or COM2 serial port available
* LAN interface card

The Agilent BASIC examples were run on a UNIX 700 Series workstation

Running C/C++ Programming Examples

To run the example programs written in C/C++ you must include the required files in the Microsoft
Visual C++ 6.0 project. For more information, refer to the Agilent VISA User’s Manual, available on
Agilent’s website: hitp:\\www.agilent.com.

NOTE If you encounter the error message C1010 when running the C/C++ programs then use the
not using precompiled header option in the IDE.

If you are using the VISA library do the following:

¢ add the visa32.lib file to the Resource Files

¢ add the visa.h file to the Header Files

If you are using the NI-488.2 library do the following:
¢ add the GPIB-32.0BJ file to the Resource Files

¢ add the windows.h file to the Header Files

¢ add the Deci-32.h file to the Header Files

IMPORTANT The VXI-11 SCPI service must be enabled before you can communicate with the signal
generator over the LAN interface. Go to the Utility > GPIB/RS-232 LAN > LAN Services
Setup menu and enable the VXI-11 SCPI service.

Refer to the National Instrument website for information on the NI-488.2 library and file
requirements. For information on the VISA library see the Agilent website.

1. Pentium is a U.S. registered trademark of Intel Corporation

32 Chapter 2

Programming Examples
Using the Programming Examples

The example C++ programs are available on the PSG Documentation CD-ROM, enabling you to cut
and paste the examples into a text editor.

Running Visual Basic 6.0®° Programming Examples

To run the example programs written in Visual Basic 6.0 you must include references to the

10 Libraries. For more information on VISA and IO libraries, refer to the Agilent VISA User’s
Manual, available on Agilent’s website: Atip:\\www.agtlent.com. In the Visual Basic IDE (Integrated
Development Environment) go to Proj ect —Ref er ences and place a check mark on the following
references:

¢ Agilent VISA COM Resource Manager 1.0
¢ VISA COM 1.0 Type Library

NOTE If you want to use VISA functions such as viWrite, then you must add the visa32.bas module
to your Visual Basic project.

The signal generator’s VXI-11 SCPI service must be on before you can run the Download Visual Basic
6.0 programming example.

IMPORTANT The VXI-11 SCPI service must be enabled before you can communicate with the signal
generator over the LAN interface. Go to the Utility > GPIB/RS-232 LAN > LAN Services
Setup menu and enable (turn On) the VXI-11 SCPI service.

You can start a new Standard EXE project and add the required references. Once the required
references are include, you can copy the example programs into your project and add a command
button to For ml that will call the program.

The example Visual Basic 6.0 programs are available on the PSG Documentation CD-ROM, enabling
you to cut and paste the examples into your project.

Running C# Programming Examples

To run the example program written in C# you must have the .NET framework installed on your
computer. You must also have the Agilent IO Libraries installed on your computer. The .NET
framework can be downloaded from the Microsoft website.

IMPORTANT The VXI-11 SCPI service must be enabled before you can communicate with the signal
generator over the LAN interface. Go to the Utility > GPIB/RS-232 LAN > LAN Services
Setup menu and enable (turn On) the VXI-11 SCPI service.

1. Copy the State_File.cs file in the examples directory to the .NET installation directory where the
csc.exe file is located. The example C# program is available on the PSG Documentation CD-ROM

2. Run the MS-DOS Command Prompt program. Change the directory so that the command prompt
program is in the same directory as the csc.exe and State_File programs.

1. Visual Basic is a registered trademark of Microsoft corporation

Chapter 2 33

Programming Examples
GPIB Programming Examples

3.
4.

On the command line, enter csc State_Fil e. cs.

Follow the prompts in the program to save and recall signal generator instrument states.

GPIB Programming Examples

“Interface Check using Agilent BASIC” on page 35

“Interface Check Using NI-488.2 and C++” on page 36

“Interface Check using VISA and C” on page 37

“Local Lockout Using Agilent BASIC” on page 38

“Local Lockout Using NI-488.2 and C++” on page 39

“Queries Using Agilent BASIC” on page 40

“Queries Using NI-488.2 and C++” on page 41

“Queries Using VISA and C” on page 43

“Setting a CW Signal Using VISA and C” on page 45

“Generating an Externally Applied AC-Coupled FM Signal Using VISA and C” on page 47
“Generating an Internal AC-Coupled FM Signal Using VISA and C” on page 49
“Generating a Step-Swept Signal Using VISA and C” on page 50

“Saving and Recalling States Using VISA and C” on page 52

“Reading the Data Questionable Status Register Using VISA and C” on page 54
“Reading the Service Request Interrupt (SRQ) Using VISA and C” on page 57
“Using 8757D Pass-Thru Commands” on page 60

Before Using the Examples

If the Agilent GPIB interface card is used, then the Agilent VISA library along with the Agilent SICL
library should be installed. If the National Instruments PCI-GPIB interface card is used, the NI-VISA
library along with the NI-488.2 library should be installed. Refer to “2. Selecting 10 Libraries for
GPIB” on page 6 and the documentation for your GPIB interface card for details.

NOTE Agilent BASIC addresses the signal generator at 719. The GPIB card is addressed at 7 and

the signal generator at 19. The GPIB address designator for other libraries is typically GPIBO
or GPIBI.

34

Chapter 2

Programming Examples
GPIB Programming Examples

Interface Check using Agilent BASIC

This program causes the signal generator to perform an instrument reset. The SCPI command *RST
places the signal generator into a pre-defined state and the remote annunciator (R) appears on the
front panel display.

The following program example is available on the PSG Documentation CD-ROM as basicexl.txt.

10
20
30
40
50
60
70
80
90
100
110
120

130 !

140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290

!**

!

| PROGRAM NAME: basi cex1.rtf

!

! PROGRAM DESCRI PTION: This programverifies that the GPIB connections
! and interface are functional.

I Connect a controller to the signal generator using a GPIB cable.

! LEAR and RESET the controller and type in the foll ow ng conmands

! and then RUN the program

|

[H Kk kR KK KRR KRR R R KRR R R KRRk KR KRRk KRR KRR K R R K KK

!
Si g_gen=719 | Declares a variable to hold the signal generator's address
LOCAL Sig_gen ! Places the signal generator into Local node
CLEAR Sig_gen ! Clears any pending data |1/0O and resets the parser

REMOTE 719 ! Puts the signal generator into renote node

CLEAR SCREEN | Clears the controllers display

REMOTE 719

QUTPUT Sig_gen;"*RST" | Places the signal generator into a defined state
PRI NT "The signal generator should now be in REMOTE."

PRI NT

PRINT "Verify that the renpte [R] annunciator is on. Press the "“Local' key, "
PRINT "on the front panel to return the signal generator to local control."

PRI NT
PRINT "Press RUNto start again."
END ! Program ends

Chapter 2 35

Programming Examples
GPIB Programming Examples

Interface Check Using NI-488.2 and C++

This example uses the NI-488.2 library to verify that the GPIB connections and interface are
functional. Start Microsoft Visual C++ 6.0, add the required files, and enter the following code into
your .cpp source file.

The following program example is available on the PSG Documentation CD-ROM as niexl.cpp.

[] KRRk kkkkkkkkkkkkkkkkkkkkkkkkkkkk Kk kkkkkkkkkkkkkkkkhkkkhkkkkkhkhkhkkhhkkhkkkkkkkkkkk kK ok

11

/1 PROGRAM NAME: ni ex1.cpp

11

/1 PROGRAM DESCRI PTION: This programverifies that the GPIB connections and
/1 interface are functional.

11

/1 Connect a GPIB cable fromthe PC GPIB card to the signal generator

/1 Enter the following code into the source .cpp file and execute the program
11

[] KRERkkkkkkkkkkkkkkkkkkkkkkkkkkkkk Kk kK ko kkkkkkkhkkkkhkkkhkkkkkhkhkkkkkhhkkhkkkkhkkkkkk kK ok

#i nclude "stdafx. h"

#i nclude <iostreanv
#i ncl ude "wi ndows. h"
#i nclude "Decl -32. h"
usi ng nanespace std;

int GPl BO= 0; // Board handl e
Addr 4882_t Address[31]; // Declares an array of type Addr4882_t

int main(void)

{
int sig; /1 Declares a device descriptor variable
sig = ibdev(0, 19, 0, 13, 1, 0); // Aquires a device descriptor
ibclr(sig); /'l Sends device clear nessage to signal generator
ibwt(sig, "*RST", 4); /1 Places the signal generator into a defined state

/1 Print data to the output w ndow
cout << "The signal generator should now be in REMOTE. The renote indicator"<<endl;
cout <<"annunci ator R shoul d appear on the signal generator display"<<endl;
return O;
}

36 Chapter 2

Programming Examples
GPIB Programming Examples

Interface Check using VISA and C

This program uses VISA library functions and the C language to communicate with the signal
generator. The program verifies that the GPIB connections and interface are functional. Start
Microsoft Visual C++ 6.0, add the required files, and enter the following code into your .cpp source
file.

The following program example is available on the PSG Documentation CD-ROM as visaexl.cpp.
//**

/1 PROGRAM NAME: vi saex1. cpp

I

/| PROGRAM DESCRI PTI ON: Thi s exanpl e program verifies that the GPIB connections and

/1 and interface are functional.

/1 Turn signal generator power off then on and then run the progam

I

[RF KKK Kk K kK KK R K KA KK KKK Kk A A K KKK R KKK KA KKk A A KKK IR KKK KKK K A KKK IR KKK KKK A A AR A KKK IR AKX Kk

#i ncl ude <visa. h>
#i ncl ude <stdio. h>
#i ncl ude " St dAf x. h"
#i nclude <stdlib. h>

void main ()

{

Vi Sessi on defaul tRM vi; /| Declares a variable of type Vi Session

/1 for instrument communication

Vi Status vi Status = 0;
/1 Opens a session to the GPIB device
/1 at address 19

vi St at us=vi OpenDef aul t RM &def aul t RM ;

vi St at us=vi Open(defaul tRM "GPIB::19::INSTR', VI_NULL, VI_NULL, &vi);

if(viStatus){

printf("Could not open ViSession!\n");

printf("Check instruments and connections\n");

printf("\n");
exit(0);}
VviPrintf(vi, "*RST\n"); // initializes signal generator
// prints to the output w ndow
printf("The signal generator should now be in REMOTE. The renote indicator\n");

printf("annunciator R shoul d appear on the signal generator display\n");
printf("\n");

vi Cl ose(vi); /'l closes session

Chapter 2 37

Programming Examples
GPIB Programming Examples

vi Cl ose(defaul tRV; /'l closes default session

}
Local Lockout Using Agilent BASIC

This example demonstrates the Local Lockout function. Local Lockout disables the front panel signal
generator keys.

The following program example is available on the PSG Documentation CD-ROM as basicex2.txt.

10 T
20 !

30 ! PROGRAM NAME: basicex2.rtf

40 !

50 ! PROGRAM DESCRI PTION: I n REMOTE npde, access to the signal

60 ! generator’s functional front panel keys are disabled except for
70 ! the Local and Contrast keys. The LOCAL LOCKOUT command

80 ! will disable the Local key.

90 ! The LOCAL command, executed fromthe controller, is then

100 ! the only way to return the signal generator to front panel,

110 ! Local, control.

120 I RA ARk R Rk ko k kR ok ko kR Rk Rk kR kAR kR R ARk kKRR ARk k K kA Ak
130 Sig_gen=719 ! Declares a variable to hold PSG address

140 CLEAR Sig_gen ! Resets PSG parser and clears any out put

150 LOCAL Sig_gen ! Places the signal generator in |local node
160 REMOTE Si g_gen ! Places the signal generator in renote node
170 CLEAR SCREEN ! Clears the controllers display

180 QUTPUT Sig_gen;"*RST" ! Places the PSGin a defined state

190 ! The followi ng print statements are user pronpts

200 PRI NT "The signal generator should now be in renote."
210 PRINT "Verify that the "R and 'L' annunciators are visable"

220 PRINT ".......... Press Conti nue"

230 PAUSE

240 LOCAL LOCKOUT 7 ! Puts the signal generator in LOCAL LOCKOUT node
250 PRI NT ! Prints user pronpt nessages

260 PRI NT "Signal generator should now be in LOCAL LOCKOUT node. "

270 PRINT

280 PRINT "Verify that all keys including "Local' (except Contrast keys) have no effect."
290 PRINT

300 PRINT ".......... Press Conti nue"

310 PAUSE

320 PRINT

330 LOCAL 7 ! Returns signal generator to Local control
340 ! The followi ng print statements are user pronpts

350 PRI NT "Signal generator should now be in Local node."

38 Chapter 2

360
370
380
390
400

Programming Examples
GPIB Programming Examples

PRI NT

PRINT "Verify that the PSG s front-panel keyboard is functional."
PRI NT

PRINT "To re-start this program press RUN."

END

Local Lockout Using NI-488.2 and C++

This example uses the NI-488.2 library to set the signal generator local lockout mode. Start Microsoft

Vis

ual C++ 6.0, add the required files, and enter the following code into your .cpp source file. This

example is available on the PSG Documentation CD-ROM as niex2.cpp.

Il
11
11
11
Il
Il
Il
Il

#in
#in
#in
#in
usi

int
Add

int

R R R E E E EE E EEEEEE]

PROGRAM NAME: ni ex2. cpp

PROGRAM DESCRI PTI ON: This programwi || place the signal generator into

LOCAL LOCKOUT node. All front panel keys, except the Contrast key, will be disabled.
The | ocal command, 'ibloc(sig)' executed via programcode, is the only way to
return the signal generator to front panel, Local, control.

R R R T R Y

clude "stdafx. h"

cl ude <iostrean>

cl ude "w ndows. h"

cl ude "Decl-32. h"

ng nanespace std;

GPI BO= 0; /1 Board handl e

r4882_t Address[31]; /| Declares a variable of type Addr4882_t

mai n()
int sig; /|l Declares variable to hold interface descriptor
sig = ibdev(0, 19, 0, 13, 1, 0); /1 Opens and initialize a device descriptor
ibclr(sig); /1 Sends GPIB Sel ected Device Clear (SDC) nessage
ibwt(sig, "*RST", 4); /1l Places signal generator in a defined state

cout << "The signal generator should now be in REMOTE. The renpte node R "<<endl;
cout <<"annunci ator shoul d appear on the signal generator display."<<endl;

cout <<"Press Enter to continue"<<endl;

cin.ignore(10000,'\n");

Sendl FC(GPI BO) ; /1l Resets the GPIB interface

Addr ess[0] =19; /1 Signal generator's address

Addr ess[1] =NOADDR; /1 Signifies end elenent in array. Defined in
/1 DECL-32.H

Set RALS(GPI BO, Address); /1l Places device in Renpte with Lockout State.

Chapter 2 39

Programming Examples
GPIB Programming Examples

cout<< "The signal generator should now be in LOCAL LOCKOUT. Verify that all
keys" <<endl ;

cout<< "including the 'Local' key are disabled (Contrast keys are not
af f ect ed) " <<endl ;

cout <<"Press Enter to continue"<<endl;
cin.ignore(10000,'\n");
i bloc(sig); // Returns signal generator to |local control
cout <<endl ;
cout <<"The si gnal generator should now be in |ocal npde\n";
return 0;}

}
Queries Using Agilent BASIC

This example demonstrates signal generator query commands. The signal generator can be queried for
conditions and setup parameters. Query commands are identified by the question mark as in the
identify command *| DN?

The following program example is available on the PSG Documentation CD-ROM as basicex3.txt.

10 [k kR kR k kR kR kR ko kR kR kR kR kR kR kR kKR KKk
20 !

30 ! PROGRAM NAME: basicex3.rtf

40 !

50 ! PROGRAM DESCRI PTION: In this exanple, query commands are used

60 ! with response data formats.

70 !

80 ! CLEAR and RESET the controller and RUN the foll ow ng program

90 !

D00 I AA ARk Rk Ak ok kk ko kR kKR kR ARk kR kK kKRR ARk kR kA Ak

110 !

120 DI M A$[10], C3$[100] , D$[10] | Declares variables to hold string data

130 | NTEGER B ! Declares variable to hold int. response data
140 Sig_gen=719 ! Declares variable to hold PSG address

150 LOCAL Sig_gen ! Puts PSG in Local node

160 CLEAR Sig_gen ! Resets parser and clears any pendi ng out put
170 CLEAR SCREEN ! Clears the controller’s display

180 QUTPUT Sig_gen;"*RST" ! Puts PSGinto a defined state

190 QUTPUT Sig_gen; " FREQ Cwe" ! Querys the PSG CWfrequency setting

200 ENTER Si g_gen; F ! Enter the CWfrequency setting

210 ! Print frequency setting to the controller display

220 PRI NT "Present source CWfrequency is: ";F/ 1. E+6;"Miz"

230 PRINT

240 QUTPUT Sig_gen;"PON AWPL?" | Querys the signal generator power |evel

250 ENTER Si g_gen; W ! Enter the power |evel

40 Chapter 2

260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580

Programming Examples
GPIB Programming Examples

! Print power level to the controller display
PRI NT "Current power setting is: ";W"dBM

PRI NT
QUTPUT Si g_gen; "FREQ MODE?" | Querys the PSG for frequency node
ENTER Si g_gen; A$! Enter in the node: CW Fixed or List

! Print frequency node to the controller display
PRI NT "Source's frequency node is: ";A$

PRI NT

QUTPUT Si g_gen; "QUTP OFF" ! Turns signal generator RF state off
QUTPUT Si g_gen; " QUTP?" ! Querys the operating state of the PSG
ENTER Si g_gen; B ! Enter in the state (0 for off)

! Print the on/off state of the signal generator to the controller display
| F B>0 THEN
PRI NT "Signal Generator output is: on

ELSE
PRI NT "Signal Generator output is: off"
END | F
QUTPUT Si g_gen; "*| DN?" ! Querys for signal generator ID
ENTER Si g_gen; C$! Enter in the signal generator ID
! Print the signal generator IDto the controller display
PRI NT
PRI NT "This signal generator is a ";C$
PRI NT

! The next command is a query for the PSG s GPIB address

QUTPUT Si g_gen; " SYST: COM GPI B: ADDR?"

ENTER Si g_gen; D$! Enter in the PSG s address

! Print the signal generator's GPIB address to the controllers display
PRINT "The GPIB address is ";D$

PRI NT

! Print user pronpts to the controller's display

PRI NT "The signal generator is now under |ocal control”

PRINT "or Press RUN to start again."

END

Queries Using NI-488.2 and C++

This example uses the NI-488.2 library to query different instrument states and conditions. Start
Microsoft Visual C++ 6.0, add the required files, and enter the following code into your .cpp source

file.

The following program example is available on the PSG Documentation CD-ROM as niex3.cpp.

[] EF KKKk k ok ok ok k ok ok kkkkkkkkkkkkkkkkkkkk Kk ok kkkkk ok kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk kK kK k ok kK

/1 PROGRAM NAME: ni ex3. cpp

Il

Chapter 2 41

Programming Examples
GPIB Programming Examples

/| PROGRAM DESCRI PTI ON: Thi s exanpl e denpnstrates the use of query conmmands.
11

/1 The signal generator can be queried for conditions and instrunment states.
/1 These commands are of the type "*IDN?" where the question mark indicates
/1 a query.

11

[FF R R K Kk K kK kK KKK KKK AR KA KA K KKK R A KA KKK KKK KA KR A IR A K KKK AR KKK R KKK KA KKK AR KA KR Kk kKK

#i ncl ude "stdafx. h"

#i ncl ude <i ostrean»
#i ncl ude "w ndows. h"
#i ncl ude "Decl -32. h"

usi ng namespace std;

int GPIBO= O0; /1 Board handl e

Addr 4882_t Address[31]; /1 Declare a variable of type Addr4882_t

int main()

{
int sig; /1 Declares variable to hold interface descriptor
int num
char rdVval [100]; /| Declares variable to read instrument responses
sig = ibdev(0, 19, 0, 13, 1, 0); // Open and initialize a device descriptor
i bloc(sig); /1 Places the signal generator in |ocal node
ibclr(sig); /1 Sends Sel ected Device C ear(SDC) nessage
ibwt(sig, "*RST", 4); /1 Places signal generator in a defined state

ibwt(sig, ":FREQency:CW",614); // Querys the CWfrequency

ibrd(sig, rdval, 100); /1 Reads in the response into rdVal
rdVal [ibcntl] = "'\0"; /1 Null character indicating end of array
cout <<"Source CW frequency is "<<rdVval; /1 Print frequency of signal generator

cout <<"Press any key to continue"<<endl;
cin.ignore(10000,'\n");

ibwt(sig, "POWNAWL?",10); /1 Querys the signal generator
ibrd(sig, rdval, 100); /| Reads the signal generator power |evel
rdVal [ibcntl] = "'\0"; /1 Nul'l character indicating end of array

/1 Prints signal generator power |evel
cout <<"Source power (dBm) is : "<<rdVal;
cout <<"Press any key to continue"<<endl;
cin.ignore(10000,'\n");

ibwt(sig, ":FREQ MODE?", 11); /1 Querys source frequency node
ibrd(sig, rdval, 100); /1l Enters in the source frequency node
rdVal [ibcntl] = "'\0"; /1 Nul'l character indicating end of array

42

Chapter 2

Programming Examples
GPIB Programming Examples

cout <<"Source frequency node is "<<rdVal; // Print source frequency node
cout<<"Press any key to continue"<<endl;
cin.ignore(10000,'\n");

ibwt(sig, "OUTP OFF",12); /1 Turns off RF source
ibwt(sig, "OUTP?",5); /'l Querys the on/off state of the instrunent
ibrd(sig,rdval,2); /1 Enter in the source state

rdVal [ibcntl] = '\0";
num = (int (rdval[0]) -('0"));
if (num> 0){
cout<<"Source RF state is : On"<<endl;
tel se{
cout<<"Source RF state is : Of"<<endl;}

cout <<endl ;

ibwt(sig, "*IDN?",5); /1 Querys the instrunent ID

ibrd(sig, rdval, 100); /'l Reads the source ID

rdVal [ibcntl] = "'\0"; /1 Nul'l character indicating end of array
cout<<"Source IDis : "<<rdval; // Prints the source |ID

cout<<"Press any key to continue"<<endl;
cin.ignore(10000,'\n");
ibwt(sig, "SYST: COW GPI B: ADDR?", 20); //Querys source address

ibrd(sig, rdval, 100); /| Reads the source address
rdVal [ibcntl] = "'\0"; /1 Nul'l character indicates end of array
/1 Prints the signal generator address
cout<<"Source GPIB address is : "<<rdVval;
cout <<endl ;
cout<<"Press the 'Local' key to return the signal generator to LOCAL control "<<endl; cout <<end| ;
return O;

}
Queries Using VISA and C

This example uses VISA library functions to query different instrument states and conditions. Start
Microsoft Visual C++ 6.0, add the required files, and enter the following code into your .cpp source
file.

The following program example is available on the PSG Documentation CD-ROM as visaex3.cpp.

[KKKk k ok ok ok k ok ok kk ok ok kkkkkkk kK k ok kkkkk Kk ok kkkkkkkkkkkkkkkkkkkhkkkkkkkhkhkkhkkkhkkkkkkkkkkk kK ok

/1 PROGRAM FI LE NAME: vi saex3. cpp

11

/1 PROGRAM DESCRI PTI ON: Thi s exanpl e denpnstrates the use of query commands. The signal
/1 generator can be queried for conditions and instrument states. These commands are of
/1 the type "*IDN?"; the question mark indicates a query.

11

[] KKKk k ok ok ok k ok ok kk ok ok kkkkkkkkkkkkkkkk Kk ok kkkkkkkkkkkkkkkkkkkhkkkkkhkkkkkkhkkkhkkkkkkkkkkk kK Kk

Chapter 2 43

Programming Examples
GPIB Programming Examples

#i ncl ude <visa. h>
#i ncl ude " St dAf x. h"
#i ncl ude <i ostrean»
#i ncl ude <coni o. h>
#include <stdlib. h>

usi ng namespace std;

void main ()

{

Vi Session defaul tRM vi; /'l Declares variables of type ViSession
/1 for instrument communication

Vi Status vi Status = 0; /'l Declares a variable of type ViStatus
/1l for GPIB verifications

char rdBuffer [256]; /| Declares variable to hold string data

int num /| Declares variable to hold integer data

// Initialize the VISA system
vi St at us=vi OpenDef aul t RM &def aul t RM ;
/1 Open session to GPIB device at address 19
vi St at us=vi Open(defaul tRM "GPIB::19::INSTR', VI_NULL, VI_NULL, &vi);
if(viStatus){ /'l |f problens, then pronpt user
printf("Could not open ViSession!\n");
printf("Check instruments and connections\n");

printf("\n");

exit(0);}
VviPrintf(vi, "*RST\n"); /'l Resets signal generator
viPrintf(vi, "FREQ CWP\n"); /'l Querys the CWfrequency
vi Scanf (vi, "%", rdBuffer); /| Reads response into rdBuffer

/'l Prints the source frequency
printf("Source CWfrequency is : %\n", rdBuffer);
printf("Press any key to continue\n");

printf("\n"); /1 Prints new |line character to the display
getch();

viPrintf(vi, "POWNAMPL?\N"); /'l Querys the power |evel

vi Scanf (vi, "%", rdBuffer); /'l Reads the response into rdBuffer

/1 Prints the source power |evel
printf("Source power (dBm) is : %\n", rdBuffer);
printf("Press any key to continue\n");
printf("\n"); /1 Prints new |line character to the display
getch();
viPrintf(vi, "FREQ MODE?\n"); /1 Querys the frequency node

44 Chapter 2

Programming Examples
GPIB Programming Examples

vi Scanf (vi, "%", rdBuffer); /'l Reads the response into rdBuffer
/1 Prints the source freq node

printf("Source frequency node is : ¥%\n", rdBuffer);

printf("Press any key to continue\n");

printf("\n"); /1 Prints new |line character to the display
getch();

VviPrintf(vi, "OUTP OFF\n"); /1 Turns source RF state off

ViPrintf(vi, "OUTP?\n"); /1 Querys the signal generator's RF state
vi Scanf (vi, "%i", &wum; /'l Reads the response (integer val ue)

/1 Prints the on/off RF state
if (num>0) {
printf("Source RF state is : on\n");
tel se{
printf("Source RF state is : off\n");
}

/1 Cose the sessions

vi Cl ose(vi);
vi Cl ose(defaul tRM;
}

Setting a CW Signal Using VISA and C

This example uses VISA library functions to control the signal generator. The signal generator is set
for a CW frequency of 500 kHz and a power level of —2.3 dBm. Start Microsoft Visual C++ 6.0, add
the required files, and enter the code into your .cpp source file.

The following program example is available on the PSG Documentation CD-ROM as visaex4.cpp.

[EF KKKk kk ok ok k ok ok kkk ok kkkkkkkkkkkkkkkk Kk ok kkkkkkkkkkkkkkkkkkkhkkkkkkkkkhkkhhkkhkkkkkkkkkkkk ko

/1 PROGRAM FI LE NAME: Vi saex4. cpp

11

/1 PROGRAM DESCRI PTI ON: This exanpl e sests up the signal generator

Il frequency and power |evel.

/1 The RF state of the signal generator is turned on and then the state is queried. The
/1 response will indicate that the RF state is on. The RF state is then turned off and
/1 queried. The response should indicate that the RF state is off. The query results are
/1 printed to the to the display w ndow.

11

[] KKKk kk ok kk ok ok kk kK kkkkkkkkkkkkkkkk Kk ok kkkkkkkkkkkkkkkkkkkhkkkkkkkkkhkkhkkkhkkkkkkkkkkk kK ok

#i ncl ude " St dAf x. h"
#i ncl ude <visa. h>
#i nclude <iostrean»
#i nclude <stdlib. h>
#i ncl ude <coni o. h>

Chapter 2 45

Programming Examples
GPIB Programming Examples

void main ()

{

Vi Sessi on defaul tRM vi; /'l Declares variabl es of type Vi Session
/1 for instrument communication

Vi Status vi Status = 0; /'l Declares a variable of type ViStatus
/1l for GPIB verifications

char rdBuffer [256]; /'l Declare variable to hold string data

int num /'l Declare variable to hold integer data

vi St at us=vi OpenDef aul t RM &def aul t RM ; /1 Initialize VISA system

/1 Open session to GPIB device at address 19
vi St at us=vi Open(defaul tRM "GPIB::19::INSTR', VI_NULL, VI_NULL, &vi);
if(viStatus){ /1 |f problems then pronpt user
printf("Could not open ViSession!\n");
printf("Check instruments and connections\n");

printf("\n");

exit(0);}

VviPrintf(vi, "*RST\n"); /'l Reset the signal generator

viPrintf(vi, "FREQ 500 kHz\n"); // Set the source CWfrequency for 500 kHz
viPrintf(vi, "FREQ CWP\n"); Il Query the CWfrequency

vi Scanf (vi, "%", rdBuffer); /'l Read signal generator response

printf("Source CWfrequency is : %\n", rdBuffer); // Print the frequency
VviPrintf(vi, "PONAWPL -2.3 dBmn"); // Set the power level to -2.3 dBm
VviPrintf(vi, "POWNAMPL?\N"); /'l Query the power |evel
vi Scanf (vi, "%", rdBuffer); /'l Read the response into rdBuffer
printf("Source power (dBm) is : %\n", rdBuffer); // Print the power |evel
Vi Printf(vi, "OUTP: STAT O\\n"); // Turn source RF state on
VviPrintf(vi, "OUTP?\n"); /1 Query the signal generator's RF state
vi Scanf (vi, "%i", &wum; /1 Read the response (integer value)
/1l Print the on/off RF state
if (num>0) {
printf("Source RF state is : on\n");
tel se{
printf("Source RF state is : off\n");
}
printf("\n");
printf("Verify RF state then press continue\n");
printf("\n");
getch();
viCear(vi);

46 Chapter 2

Programming Examples
GPIB Programming Examples

Vi Printf(vi,"OQUTP: STAT OFF\n"); // Turn source RF state off
ViPrintf(vi, "OUTP?\n"); /1 Query the signal generator's RF state
vi Scanf (vi, "%i", &wum; /! Read the response
/1 Print the on/off RF state
if (num>0) {
printf("Source RF state is now. on\n");
tel se{
printf("Source RF state is now off\n");
}
/1 Close the sessions
printf("\n");
viCear(vi);
vi C ose(vi);
vi Cl ose(defaul tRV;

}

Generating an Externally Applied AC-Coupled FM Signal Using VISA and C

In this example, the VISA library is used to generate an ac-coupled FM signal at a carrier frequency
of 700 MHz, a power level of —2.5 dBm, and a deviation of 20 kHz. Before running the program:

¢ Connect the output of a modulating signal source to the signal generator’s EXT 2 input connector.
¢ Set the modulation signal source for the desired FM characteristics.
Start Microsoft Visual C++ 6.0, add the required files, and enter the code into your .cpp source file.

The following program example is available on the PSG Documentation CD-ROM as visaex5.cpp.
[Rk R kKR R R R KRk K KR KRRk KR KKK R KRRk KRR KR K KRR K R KKKk R R KKk R

/1 PROGRAM FI LE NAME: vi saex5. cpp

I

/1 PROGRAM DESCRI PTI ON: Thi s exanpl e sets the signal generator FM source to External 2,

/1 coupling to AC, deviation to 20 kHZ, carrier frequency to 700 MHz and the power |evel

/'l to -2.5 dBm The RF state is set to on.

I

[] KKKk Kk k ok ok ok k ok ok kkkkkkkkkkk kK k kK kkkk Kk ok kkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkhhkkhkkkkkkkkkkk kK Kk

#i ncl ude <visa. h>
#i ncl ude " St dAf x. h"
#i nclude <iostrean»
#i nclude <stdlib. h>
#i ncl ude <coni o. h>

void main ()

{

Vi Sessi on defaul tRM vi ; /1 Decl ares variables of type Vi Session

Chapter 2 47

Programming Examples
GPIB Programming Examples

/1 for instrunent communication
Vi Status vi Status = 0; /| Declares a variable of type ViStatus
/1 for GPIB verifications
/1 Initialize VISA session
vi St at us=vi OpenDef aul t RM &def aul t RM ;
/| open session to gpib device at address 19
vi St at us=vi Open(defaul tRM "GPIB::19::INSTR', VI_NULL, VI_NULL, &vi);
if(viStatus){ /1 1f problenms, then pronpt user
printf("Could not open ViSession!\n");
printf("Check instruments and connections\n");
printf("\n");
exit(0);}

printf("Exanple programto set up the signal generator\n");
printf("for an AC-coupled FM signal\n");
printf("Press any key to continue\n");

printf("\n");
getch();
printf("\n");
VviPrintf(vi, "*RST\n"); /'l Resets the signal generator
ViPrintf(vi, "FM SOUR EXT2\n"); /|l Sets EXT 2 source for FM
viPrintf(vi, "FM EXT2: COUP AC\n"); /1l Sets FM path 2 coupling to AC
viPrintf(vi, "FMDEV 20 kHz\n"); /1l Sets FM path 2 deviation to 20 kHz
VviPrintf(vi, "FREQ 700 MHz\n"); /|l Sets carrier frequency to 700 Mz
viPrintf(vi, "PONAWPL -2.5 dBmn"); // Sets the power level to -2.5 dBm
viPrintf(vi, "FM STAT O\\n"); /1 Turns on frequency nodul ation
Vi Printf(vi, "OUTP: STAT O\\n"); /1 Turns on RF out put

/1 Print user infornmation
printf("Power level : -2.5 dBmin");

printf("FMstate : on\n");

printf("RF output : on\n");

printf("Carrier Frequency : 700 MHZ\n");

printf("Deviation : 20 kHzZ\n");

printf("EXT2 and AC coupling are selected\n");

printf("\n"); /1l Prints a carrage return
/1 Close the sessions

vi Cl ose(vi);

vi Cl ose(defaul tRM;

}

48

Chapter 2

Programming Examples
GPIB Programming Examples

Generating an Internal AC-Coupled FM Signal Using VISA and C

In this example the VISA library is used to generate an ac-coupled internal FM signal at a carrier
frequency of 900 MHz and a power level of —15 dBm. The FM rate will be 5 kHz and the peak
deviation will be 100 kHz. Start Microsoft Visual C++ 6.0, add the required files, and enter the
following code into your .cpp source file.

The following program example is available on the PSG Documentation CD-ROM as visaex6.cpp.

[FF KA KK kK kK kK Rk KA KK KKK Ak A A K KK R A KA K KA KK Ak A A KK IR A KA KKK KA KA KKK IR KKK KKK A KA KKK IR AKX Kk

/| PROGRAM FI LE NAME: vi saex6. cpp

11

/| PROGRAM DESCRI PI ON: Thi s exanpl e generates an AC-coupled internal FMsignal at a 900
/Il M1z carrier frequency and a power |evel of -15 dBm The FMrate is 5 kHz and the peak
/1 deviation 100 kHz

11

[RF KKK Kk K kK KK R K KA KK KKK Kk A A K KKK R KKK KA KKk A A KKK IR KKK KKK K A KKK IR KKK KKK A A AR A KKK IR AKX Kk

#i ncl ude <visa. h>
#i ncl ude " St dAf x. h"
#i ncl ude <i ostrean»
#include <stdlib. h>
#i ncl ude <coni o. h>

void main ()

{

Vi Session defaul tRM vi; /1 Decl ares variabl es of type Vi Session
/1 for instrunent communication

Vi Status vi Status = 0; /1 Declares a variable of type ViStatus

/1 for GPIB verifications

vi St at us=vi OpenDef aul t RM &defaul tRM; // Initialize VISA session

/1 open session to gpib device at address 19
vi St at us=vi Open(defaul tRM "GPIB::19::INSTR', VI_NULL, VI_NULL, &vi);
if(viStatus){ I/ 1f problems, then pronpt user
printf("Could not open ViSession!\n");
printf("Check instruments and connections\n");
printf("\n");
exit(0);}

printf("Exanple programto set up the signal generator\n");
printf("for an AC-coupled FM signal\n");

printf("\n");

printf("Press any key to continue\n");

getch();

Chapter 2 49

Programming Examples
GPIB Programming Examples

viCear(vi); /'l Cears the signal generator
VviPrintf(vi, "*RST\n"); /'l Resets the signal generator
VviPrintf(vi, "FM2:INT: FREQ 5 kHz\n"); // Sets EXT 2 source for FM
viPrintf(vi, "FM2:DEV 100 kHz\n"); /'l Sets FM path 2 coupling to AC
VviPrintf(vi, "FREQ 900 MHz\n"); /'l Sets carrier frequency to 700 MHz
viPrintf(vi, "POW-15 dBmn"); /'l Sets the power |evel to -2.3 dBm
viPrintf(vi, "FM2:STAT ON\\n"); /1 Turns on frequency nodul ation

Vi Printf(vi, "OUTP: STAT O\\n"); /1 Turns on RF out put

printf("\n"); /'l Prints a carriage return

/1 Print user infornation
printf("Power level : -15 dBmn");
printf("FMstate : on\n");
printf("RF output : on\n");
printf("Carrier Frequency : 900 MHZ\n");
printf("Deviation : 100 kHZ\n");
printf("Internal nodulation : 5 kHz\n");
printf("\n"); /1l Print a carrage return
/1 Close the sessions
vi C ose(vi);
vi Cl ose(defaul tRM;
}

Generating a Step-Swept Signal Using VISA and C

In this example the VISA library is used to set the signal generator for a continuous step sweep on
a defined set of points from 500 MHz to 800 MHz. The number of steps is set for 10 and the dwell
time at each step is set to 500 ms. The signal generator will then be set to local mode which allows
the user to make adjustments from the front panel. Start Microsoft Visual C++ 6.0, add the required
files, and enter the following code into your .cpp source file.

The following program example is available on the PSG Documentation CD-ROM as visaex7.cpp.
//**

/1 PROGRAM FI LE NAME: vi saex7. cpp

I

/1 PROGRAM DESCRI PTI ON: Thi s exanple will programthe signal generator to performa step

/1 sweep from500-800 MHz with a .5 sec dwell at each frequency step.

I

[FRF KR KKk kK kK kK KK K KKK KKK Ak A A K KK R KKK KA KK Ak A KK IR A KA KKK KKK A IR K IR A KA KKK KA AR A KKK IR KK A Kk

#i nclude <visa. h>
#i nclude " St dAf x. h"
#i nclude <iostrean

void main ()

50 Chapter 2

Programming Examples
GPIB Programming Examples

{

Vi Session defaul tRM vi;// Declares variables of type ViSession

/1 vi establishes instrument communication

Vi Status viStatus = 0;// Declares a variable of type ViStatus
/1l for GPIB verifications

vi St at us=vi OpenDef aul t RM &lefaul tRM; // Initialize VISA session
/1 Open session to GPIB device at address 19
vi St at us=vi Open(defaul tRM "GPIB::19::1NSTR', VI_NULL, VI_NULL, &vi);
if(viStatus){// |f problenms, then pronpt user
printf("Could not open ViSession!\n");
printf("Check instruments and connections\n");

printf("\n");

exit(0);}

viCear(vi); /'l Cears the signal generator
VviPrintf(vi, "*RST\n"); /'l Resets the signal generator
ViPrintf(vi, "*CLS\n"); I/l Cears the status byte register
VviPrintf(vi, "FREQ MODE LI ST\n"); /'l Sets the sig gen freq node to |ist
Vi Printf(vi, "LIST: TYPE STEP\n"); I/ Sets sig gen LIST type to step

viPrintf(vi, "FREQ STAR 500 MHz\n"); // Sets start frequency
viPrintf(vi, "FREQ STOP 800 MHz\n"); // Sets stop frequency

VviPrintf(vi, "SWE:PON 10\n"); /1 Sets nunber of steps (30 nHz/step)
VviPrintf(vi, "SWEDWEL .5 S\n"); I/ Sets dwell tine to 500 ns/step
ViPrintf(vi, "PONAWPL -5 dBmn"); /'l Sets the power |evel for -5 dBm
Vi Printf(vi, "OUTP: STAT O\\n"); /1 Turns RF output on
ViPrintf(vi, "INIT: CONT O\\n"); /'l Begins the step sweep operation
/1 Print user information
printf("The signal generator is in step sweep node. The frequency range is\n");
printf("500 to 800 nmHz. There is a .5 sec dwell tine at each 30 nHz step.\n");
printf("\n"); Il Prints a carriage return/line feed
viPrintf(vi, "OUTP: STAT OFF\n"); /1 Turns the RF output off

printf("Press the front panel Local key to return the\n");
printf("signal generoator to nmanual operation.\n");

/1 Closes the sessions
printf("\n");
vi Cl ose(vi);
vi Cl ose(defaul tRM;
}

Chapter 2 51

Programming Examples
GPIB Programming Examples

Saving and Recalling States Using VISA and C

In this example, instrument settings are saved in the signal generator’s save register. These settings
can then be recalled separately; either from the keyboard or from the signal generator’s front panel.
Start Microsoft Visual C++ 6.0, add the required files, and enter the following code into your .cpp
source file.

The following program example is available on the PSG Documentation CD-ROM as visaex8.cpp.

[FF KRR Kk kA kK kK Rk KA KK KKK Kk A A K KK R A KA K KA KKK A KR A KR A KA KKK KA KA A KKK IR KKK KKK A AR A KKK IR KK A Kk

/| PROGRAM FI LE NAME: vi saex8. cpp

11

/| PROGRAM DESCRI PTION: In this exanple, instrunent settings are saved in the signal

/1 generator's registers and then recalled.

/1 Instrument settings can be recalled fromthe keyboard or, when the signal generator

// is put into Local control, fromthe front panel.

/1 This programwill initialize the signal generator for an instrunent state, store the
|/ state to register #1. An *RST command will reset the signal generator and a *RCL

/1 command will return it to the stored state. Followi ng this renote operation the user
/1 will be instructed to place the signal generator in Local node.

11

[KKK Kk kK kK KK K kKA KK KKK Kk A A K KKK R KKK KA KK A h A KR K IR KKK KKK K A KKK IR A KA KKK KA A AR A KK IR KK A Kk

#i ncl ude <visa. h>
#i ncl ude " St dAf x. h"
#i ncl ude <i ostrean»
#i ncl ude <conio. h>

void main ()
{
Vi Sessi on defaul tRM vi;// Declares variables of type Vi Session
/1 for instrument conmmunication
Vi Status viStatus = 0;// Declares a variable of type ViStatus
/1l for GPIB verifications
I ong | ngDone = 0; /| Operation conplete flag

vi St at us=vi OpenDef aul t RM &def aul t RM ; /1 Initialize VISA session
/1 Open session to gpib device at address 19
vi St at us=vi Open(defaul tRM "GPIB::19::INSTR', VI_NULL, VI_NULL, &vi);
if(viStatus){// |f problenms, then pronpt user

printf("Could not open ViSession!\n");

printf("Check instruments and connections\n");

printf("\n");

exit(0);}
printf("\n");

52 Chapter 2

viCear(vi); I
VviPrintf(vi, "*CLS\n"); I

11
printf("Programm ng exanpl e using the
printf("used to save and recall

printf("\n");
ViPrintf(vi, "*RST\n"); I
VviPrintf(vi, "FREQ 5 MHz\n"); I
ViPrintf(vi, "POWNALC OFF\n"); I
VviPrintf(vi, "PONAWPL -3.2 dBmn"); //
Vi Printf(vi, "OUTP: STAT O\\n"); I
viPrintf(vi, "*OPC\n"); I
whil e (!l ngDone)
vi Scanf (vi ,"% ", & ngDone); I
ViPrintf(vi, "*SAV 1\n"); I
11

printf("The current signal

printf("to Register #1. Cbserve the state then

*SAV, * RCL

an instrunent's state\n");

generator operating

Programming Examples
GPIB Programming Examples

Cl ears the signal generator
Resets the status byte register
Print user infornation

SCPI commands\ n");

Resets the signal generator
Sets sig gen frequency
Turns ALC Of f

Sets power for -3.2 dBm
Turns RF output On

Checks for operation conplete

Waits for setup to conplete
Saves sig gen state to register #1
Print user infornation

state will be saved\n");

press Enter\n");

printf("\n"); /1 Prints new |ine character
getch(); /1 Wait for user input
| ngDone=0; /'l Resets the operation conplete flag
VviPrintf(vi, "*RST\n"); /'l Resets the signal generator
ViPrintf(vi, "*OPC\n"); /| Checks for operation conplete
whil e (!l ngDone)

vi Scanf (vi ,"% ", & ngDone) ; /Il Waits for setup to conplete

/1 Print user infromation

printf("The instrunent is nowin it's Reset operating state. Press the\n");
printf("Enter key to return the signal generator to the Register #1 state\n");
printf("\n"); /'l Prints new |ine character
getch(); /'l Waits for user input
| ngDone=0; /'l Reset the operation conplete flag
viPrintf(vi, "*RCL 1\n"); /'l Recalls stored register #1 state
ViPrintf(vi, "*OPC\n"); /| Checks for operation conplete
while (!l ngDone)

vi Scanf (vi ,"% ", & ngDone) ; /1 Waits for setup to conplete

/1 Print user information

printf("The signal generator has been returned to it's Register #1 state\n");
printf("Press Enter to continue\n");
printf("\n"); /'l Prints new |ine character
getch(); /1 Waits for user input
| ngDone=0; /| Reset the operation conplete flag
VviPrintf(vi, "*RST\n"); /'l Resets the signal generator
Chapter 2 53

Programming Examples
GPIB Programming Examples

ViPrintf(vi, "*OPC\n"); /| Checks for operation conplete
whil e (!l ngDone)
vi Scanf (vi ,"% ", & ngDone); /1 Waits for setup to conplete

/1 Print user information
printf("Press Local on instrunent front panel to return to manual node\n");
printf("\n"); /1 Prints new |ine character

/1 Close the sessions
vi Cl ose(vi);

vi Cl ose(defaul tRV;
}

Reading the Data Questionable Status Register Using VISA and C

In this example, the signal generator’s data questionable status register is read. You will be asked to
set up the signal generator for error generating conditions. The data questionable status register will
be read and the program will notify the user of the error condition that the setup caused. Follow the
user prompts presented when the program runs. Start Microsoft Visual C++ 6.0, add the required
files, and enter the following code into your .cpp source file.

The following program example is available on the PSG Documentation CD-ROM as visaex9.cpp.

[FF R AR Kk kA kK kK KK KA KKK KRk KA K KKK KA KA KKK IR KK KKK KA A KA KKK IR A KA KKK A IR KKK R A KKK KAk h Kk ok *

/1 PROGRAM NAME: vi saex9. cpp

11

/1 PROGRAM DESCRI PTION: In this exanple, the data questionable status register is read.
/1 The data questionable status register is enabled to read an unlevel ed condition.

/1 The signal generator is then set up for an unlevel ed condition and the data

/'l questionabl e status register read. The results are then displayed to the user.

I/ The status questionable register is then setup to nonitor a nodul ation error condition.
/'l The signal generator is set up for a nodulation error condition and the data

/1 questionabl e status register is read.

/1 The results are displayed to the active wi ndow.

11

[FRF R KK Kk kA kKK Rk KA KK A KK KKK KKK KA KA KKK IR KKK KA KA KKK KKK AR A KA KKK A KA KKK KA KKK KKKk Kk x*

#i nclude <visa. h>
#i nclude " St dAf x. h"
#i nclude <iostrean

#i ncl ude <coni o. h>

void main ()

{

Vi Session defaul tRM vi;// Declares a variables of type Vi Session
/1 for instrument communication

Vi Status viStatus = 0;// Declares a variable of type ViStatus

54 Chapter 2

Programming Examples
GPIB Programming Examples

/1 for GPIB verifications
int nunrO;// Declares a variable for switch statenments

char rdBuffer[256] ={0}; Il Declare a variable for response data

vi St at us=vi OpenDef aul t RM &def aul t RM ; /1 Initialize VISA session
/1 Open session to GPIB device at address 19

vi St at us=vi Open(defaul tRM "GPIB::19::INSTR', VI_NULL, VI_NULL, &vi);
if(viStatus){ // |f problems, then pronpt user
printf("Could not open ViSession!\n");

printf("Check instruments and connections\n");

printf("\n");

exit(0);}

printf("\n");

viCear(vi);// Cears the signal generator

/1l Prints user infornation

printf("Programm ng exanple to denpbnstrate reading the signal generator's
Status Byte\n");

printf("\n");

printf("Manually set up the sig gen for an unlevel ed output condition:\n");
printf("* Set signal generator output anplitude to +20 dBmin");

printf("* Set frequency to maximum val ue\n");

printf("* Turn On signal generator's RF Qutput\n");

printf("* Check signal generator's display for the UNLEVEL annuniator\n");
printf("\n");

printf("Press Enter when ready\n");

printf("\n");

getch(); /1 Waits for keyboard user input

Vi Printf(vi, "STAT: QUES: PONW ENAB 2\ n"); /| Enabl es the Data Questionabl e
/| Power Condition Register Bits
// Bits '0" and '1'

Vi Printf(vi, "STAT: QUES: PON COND?\ n") ; /1 Querys the register for any
/1l set bits

vi Scanf (vi, "%", rdBuffer); /|l Reads the decimal sum of the
/1l set bits

nune(int (rdBuffer[1]) -('0")); // Converts string data to

/'l nuneric

switch (num /1 Based on the deci nmal val ue
{
case 1:
printf("Signal Generator Reverse Power Protection Tri pped\n");

Chapter 2 55

Programming Examples
GPIB Programming Examples

printf("/n");
br eak;
case 2:

printf("Signal Generator Power is Unleveled\n");
printf("\n");
br eak;
defaul t:
printf("No Power Unlevel ed condition detected\n");
printf("\n");
}
viCear(vi); /1 Cears the signal generator
/1 Prints user infornation
[LA I e e \n");
printf("\n");
printf("Manually set up the sig gen for an unlevel ed output condition:\n");
printf("\n");
printf("* Select AM nodul ation\n");
printf("* Select AM Source Ext 1 and Ext Coupling AC\n");
printf("* Turn On the nodul ation.\n");
printf("* Do not connect any source to the input\n");
printf("* Check signal generator's display for the EXT1 LO annunci ator\n");
printf("\n");
printf("Press Enter when ready\n");
printf("\n");
getch(); /1 Waits for keyboard user input
viPrintf(vi, "STAT: QUES: MOD: ENAB 16\n"); // Enables the Data Questionable
/1 Mbdul ation Condition Register
/1l bits '0","1,"2","3" and '4

vi Printf(vi, "STAT: QUES: MOD: COND?\ n") ; /'l Querys the register for any
/1l set bits

vi Scanf (vi, "%", rdBuffer); // Reads the decimal sum of the
/1l set bits

nune(int (rdBuffer[1]) -('0")); // Converts string data to nuneric

switch (num /1 Based on the deci mal val ue

{

case 1:
printf("Signal Generator Mdulation 1 Undernod\n");

printf("\n");
br eak;
case 2:

printf("Signal Generator Mdulation 1 Overnod\n");

56

Chapter 2

Programming Examples
GPIB Programming Examples

printf("\n");
br eak;
case 4:

printf("Signal Generator Mdulation 2 Undernod\n");

printf("\n");
br eak;
case 8:

printf("Signal Generator Mdulation 2 Overnod\n");

printf("\n");
br eak;
case 16:

printf("Signal Generator Mdul ation Uncalibrated\n");
printf("\n");
br eak;
defaul t:
printf("No Problens with Mdul ation\n");
printf("\n");
}
/1 Cose the sessions
vi G ose(vi);
vi Cl ose(defaul tRV;

}
Reading the Service Request Interrupt (SRQ) Using VISA and C

This example demonstrates use of the Service Request (SRQ) interrupt. By using the SRQ, the
computer can attend to other tasks while the signal generator is busy performing a function or
operation. When the signal generator finishes it’s operation, or detects a failure, then a Service
Request can be generated. The computer will respond to the SRQ and, depending on the code, can
perform some other operation or notify the user of failures or other conditions.

This program sets up a step sweep function for the signal generator and, while the operation is in
progress, prints out a series of asterisks. When the step sweep operation is complete, an SRQ is
generated and the printing ceases.

Start Microsoft Visual C++ 6.0, add the required files, and enter the following code into your .cpp
source file. This example is available on the PSG Documentation CD-ROM as visaex10.cpp.

[] RFE KKKk ok k ok ok ok k ok ok kkkkkkkkkkkkkkkkkkkk Kk ok kkkkkkkkkkkkkkkhkkkhkkkkhkkkkkkkhkkkk kK kx

11

/1 PROGRAM FI LE NAME: vi saex10. cpp

11

/1 PROGRAM DESCRI PTI ON: This exanpl e denpnstrates the use of a Service Request (SRQ

/1 interupt. The program sets up conditions to enable the SRQ and then sets the signal
/1 generator for a step node sweep. The programw || enter a printing | oop which prints
/1 an * character and ends when the sweep has conpl eted and an SRQ received.

Chapter 2 57

Programming Examples
GPIB Programming Examples

Il

[FF R AR Rk kA kK KK Rk KA KK KKK Ak A A KKK KR A KA KKK KKK KA KKK IR KKK KKK AR KR A KKK IR A KA KKk A Ak hk

#i ncl ude " St dAf x. h"
#i nclude "visa. h"

#i ncl ude <stdio. h>
#i ncl ude "w ndows. h"
#i ncl ude <coni o. h>

#define MAX_CNT 1024

int sweep=1; // End of sweeep flag

/* Prototypes */

Vi Status _VI_FUNCH i nterupt (Vi Session vi, ViEventType eventType, ViEvent event,

int min ()
{
Vi Session defaul tRM vi;// Declares variables of type ViSession
/1 for instrunent conmunication
Vi Status viStatus = 0;// Declares a variable of type ViStatus
/1 for GPIB verifications
char rdBuffer[MAX_CNT];// Declare a block of nmenory data

vi St at us=vi OpenDef aul t RM &lefaul tRM;// Initialize VISA session
if(viStatus < VI_SUCCESS){// |f problenms, then pronpt user
printf("ERROR initializing VISA... exiting\n");
printf("\n");
return -1;}

/1 Open session to gpib device at address 19
vi St at us=vi Open(defaul tRM "GPIB::19::INSTR', VI_NULL, VI_NULL, &vi);
if(viStatus){ /1 |f problenms then pronpt user
printf("ERROR Could not open communication with instrument\n");
printf("\n");
return -1;}

viCear(vi); /1 Clear the signal generator
VviPrintf(vi, "*RST\n"); /'l Reset signal generator

/1 Print program header and infornmation
printf("** End of Sweep Service Request **\n");
printf("\n");

Vi Addr addr);

58

Chapter 2

Programming Examples
GPIB Programming Examples

printf("The signal generator will be set up for a step sweep npbde operation.\n");
printf("An "*' will be printed while the instrunent is sweeping. The end of \n");
printf("sweep will be indicated by an SRQ on the GPIB and the programwill end.\n");
printf("\n");

printf("Press Enter to continue\n");

printf("\n");

getch();

VviPrintf(vi, "*CLS\n");// Clears signal generator status byte

viPrintf(vi, "STAT: OPER NTR 8\n");// Sets the Qperation Status G oup Negative
// Transition Filter to indicate a negative

I/ transition in Bit 3 (Sweeping) which

/1 will set a corresponding event in the

/'l Operation Event Register. This occurs at

/1 the end of a sweep.

viPrintf(vi, "STAT: OPER PTR O\n");// Sets the Qperation Status G oup Positive
/1 Transition Filter so no positive transition

/1 on Bit 3 affects the Operation Event Registar

/'l Register. The positive transition occurs at

/'l the start of a sweep.

viPrintf(vi, "STAT: OPER ENAB 8\n");// Enables QOperation Status Event Bit 3

// to report the event to Status Byte

/'l Register Summary Bit 7.

viPrintf(vi, "*SRE 128\n");// Enables Status Byte Register Sunmary Bit 7

/1 The next line of code indicates the function // to call on an event

vi Status = vilnstall Handl er(vi, VI_EVENT_SERVI CE_REQ interupt, rdBuffer);

/1 The next |ine enables the detection of an event

vi Status = vi Enabl eEvent (vi, VI_EVENT_SERVI CE_REQ VI _HNDLR, VI _NULL);

viPrintf(vi, "FREQ MODE LIST\n");// Sets frequency node to |ist
VviPrintf(vi, "LIST: TYPE STEP\n");// Sets sweep type to step

ViPrintf(vi, "LIST: TRIG SOUR IMMn");// Imrediately trigger the sweep
viPrintf(vi, "LIST: MODE AUTONn");// Sets node for the |ist sweep
viPrintf(vi, "FREQ STAR 40 MHZ\n");// Start frequency set to 40 Mz
viPrintf(vi, "FREQ STOP 900 MHZ\n");// Stop frequency set to 900 Mz
ViPrintf(vi, "SWE:PON 25\n");// Sets nunber of points for the step sweep
ViPrintf(vi, "SWEDWEL .5 S\n");// Allow .5 sec dwell at each point

ViPrintf(vi, "IINIT: CONT OFF\n");// Sets up for single sweep
ViPrintf(vi, "TRIG SOUR IMANn");// Triggers the current sweep
viPrintf(vi, "INNT\n");// Takes a single sweep

printf("\n");

/1 \WWile the instrument is sweeping have the

Chapter 2 59

Programming Examples
GPIB Programming Examples

/1 program busy with printing to the display.
/1 The Sleep function defined in the header
/1 file, windows.h, wll pause the program
/'l operation for .5 seconds
whil e (sweep==1){
printf("*");
Sl eep(500) ; }
printf("\n");
/1 The following lines of code will stop the
/1 events and close down the session
vi Status = vi Di sabl eEvent (vi, VI_ALL_ENABLED EVENTS, VI _ALL_MECH) ;
vi Status = vi Uninstal | Handl er(vi, VI_EVENT_SERVI CE_REQ interupt, rdBuffer);

vi Status = vi C ose(vi);

vi Status = vi Cl ose(defaul tRV;
return O;

Il The follow ng function is called when an SRQ event occurs. Code specific to your
/1 requirenents woul d be entered in the body of the function.

Vi Status _VI_FUNCH i nterupt (Vi Session vi, ViEventType eventType, ViEvent event, Vi Addr addr)

{

Vi Status status;

ViUl nt16 stb;

status = vi ReadSTB(vi, &stbh); // Reads the Status Byte

sweep=0; // Sets the flag to stop the '*' printing
printf("\n"); /1 Print user information

printf("A SRQ indicating end of sweep has occurred\n");

vi Cl ose(event); /'l Closes the event
return VI _SUCCESS;
}

Using 8757D Pass-Thru Commands

Pass-thru commands enable you to temporarily interrupt ramp sweep system interaction so that you
can send operating instructions to the PSG. This section provides setup information and an example
program for using pass-thru commands in a ramp sweep system.

60 Chapter 2

Programming Examples
GPIB Programming Examples

Equipment Setup

To send pass-thru commands, set up the equipment as shown in Figure 2-1. Notice that the GPIB
cable from the computer is connected to the GPIB interface bus of the 8757D.

Figure 2-1
COMPUTER
BNC Cable
é A
BNC Cable
GPIB
BNC Cable Cable
GPIB Cable Sweep| Pos
Z-Axis 8757 Stop In i
Blank/Mkrs GPIB System Interface Sweep |0-10v | Blank
> GPIB
g = EEEEg oo EEEE Interface
o (€=l coooooes
o] = oooo O OO Desss
= 00 o 08888
PSG Output 8757D
SIGNAL SCALAR
GENERATOR puT Detector NETWORK
ANALYZER
scaler netwk_po

GPIB Address Assignments

Table 2-1 describes how GPIB addresses should be assigned for sending pass-thru commands. These
are the same addresses used in Example 2-1.

Chapter 2 61

Programming Examples
GPIB Programming Examples

Table 2-1
Instrument GPIB Key Presses/Description
Address

PSG 19 Press Utility > GPIB/RS-232 LAN > GPIB Address > 19 > Enter.

8757D 16 Press LOCAL > 8757 > 16 > Enter.

8757D (Sweeper) | 19 This address must match the PSG.

Press LOCAL > SWEEPER > 19 > Enter.

Pass Thru 17 The pass thru address is automatically selected by the 8757D by inverting
the last bit of the 8757D address. Refer to the 8757D documentation for
more information. Verify that no other instrument is using this address on
the GPIB bus.

Example Pass-Thru Program

Example 2-1 on page 62 is a sample Agilent BASIC program that switches the 8757D to pass-thru
mode, allowing you to send operating commands to the PSG. After the program runs, control is given
back to the network analyzer. The following describes the command lines used in the program.

Line 30 PT is set to equal the source address. C1 is added, but not needed, to specify the channel.
Lines 40, 90 The END statement is required to complete the language transition.

Lines 50, 100 A WAIT statement is recommended after alanguage change to allow al instrument
changes to be compl eted before the next command.

Lines 70, 80 Thisis added to ensure that the instrument has completed all operations before
switching languages. Line 70 can only be used when the signal generator isin single
sweep mode.

Line 110 This takes the network analyzer out of pass-thru command mode, and putsit back in

control. Any analyzer command can now be entered.

Example 2-1 Pass-Thru Program
10 ABCRT 7

20 CLEAR 716

30 OUTPUT 716;"PT19;C1"

40 OUTPUT 717;"SYST:LANG SCPI;END
50 WAIT .5

60 OUTPUT 717;"POW:STAT OFF"

70 OUTPUT 717;"*OPC?"

62 Chapter 2

Programming Examples
LAN Programming Examples

80 ENTER 717; Reply
90 OUTPUT 717;"SYST:LANG COMP";END
100 WAIT 5

110 OUTPUT 716;"C2"

120 END

LAN Programming Examples
¢ VXI-11 LAN Programming

o “Setting Parameters and Sending Queries Using Sockets and C” on page 66
¢ “Setting the Power Level and Sending Queries Using PERL” on page 86
¢ “Generating a CW Signal Using Java” on page 87

This section describes methods of communicating with the signal generator over the LAN interface.

The VXI-11 protocol is described and program examples using C, Java, and PERL over socket LAN

are shown. Telnet and FTP also use the LAN interface for instrument communication. For details on
using FTP and TELNET refer to “Using FTP” on page 22 and “Using Telnet LAN” on page 18 of this
guide.

Before Using the Examples

To use these programming examples you must change references to the IP address or instrument
hostname to match the IP address or hostname of your signal generator.

VXI-11 LAN Programming

The signal generator supports the VXI-11 protocol for instrument control using the LAN interface.
The VXI-11 protocol is an industry standard, instrument communication protocol, described in the
VXI-11 standard. Refer to the VXIbus Consortium.Inc website at hitp.//www.vxi.org/freepdfdownloads
for more information.

NOTE It is recommended that the VXI-11 protocol be used for instrument communication over the
LAN interface.

The VXI- 11 protocol uses Open Network Computing/Remote Procedure Calls (ONC/RPC) running over
TCP/IP. It is intended to provide GPIB capabilities such as SRQ (Service Request), status byte
reading, and DCAS (Device Clear State) over a LAN interface. The VXI-11 standard allows IEEE 488.2
messages and IEEE 488.1 instrument control messages.

Configuring for VXI-11
Refer to the “Agilent I0 Libraries Suite” on page 3 for information on configuring the interface for
LAN communication.

Using VXI-11 with GPIB Programs

The GPIB programming examples, listed in the GPIB Programming Examples section and using the
VISA Library, can be easily changed to use the LAN VXI-11 protocol by changing the address string.

Chapter 2 63

Programming Examples
LAN Programming Examples

For example, change the "GPI B:: 19: : | NSTR' address string to " TCPI P: : host nane: : | NSTR'
where host nane is the IP address or hostname of the signal generator. The VXI-11 protocol has the
same capabilities as GPIB. See the section “Setting Up the LAN Interface” on page 13 for more
information.

IMPORTANT The VXI-11 SCPI service must be enabled before you can communicate with the signal
generator over the LAN interface. Go to the Utility > GPIB/RS-232 LAN > LAN Services
Setup menu and enable (turn On) the VXI-11 SCPI service.

Sockets LAN Programming using C

The program listing shown in “Setting Parameters and Sending Queries Using Sockets and C” on
page 66 consists of two files; lanio.c and getopt.c. The lanio.c file has two main functions; i nt
mai n() and an int mai nl().

NOTE The sockets protocol does not provide GPIB capabilities such as SRQ (Service Request) and
status byte reading. It is recommended that the VXI-11 protocol be used for instrument
communication over the LAN interface.

The i nt mai n() function allows communication with the signal generator interactively from the
command line. The program reads the signal generator's hostname from the command line, followed
by the SCPI command. It then opens a socket to the signal generator, using port 5025, and sends the
command. If the command appears to be a query, the program queries the signal generator for a
response, and prints the response.

IMPORTANT Sockets SCPI must be enabled before you can communicate with the signal generator
using this protocol. Go to the Utility > GPIB/RS-232 LAN > LAN Services Setup menu and
enable (turn On) Sockets SCPI.

The int mainl(), after renaming to int main(), will output a sequence of commands to the signal
generator. You can use the format as a template and then add your own code.

This program is available on the PSG Documentation CD-ROM as lanio.c.

Sockets on UNIX

In UNIX, LAN communication via sockets is very similar to reading or writing a file. The only
difference is the openSocket() routine, which uses a few network library routines to create the
TCP/IP network connection. Once this connection is created, the standard fread() and fwrite()
routines are used for network communication. The following steps outline the process:

1. Copy the lanio.c and getopt.c files to your home UNIX directory. For example, /users/ nydir/.
2. At the UNIX prompt in your home directory, type: cc -Aa -O -0 lanio lanio.c

3. At the UNIX prompt in your home directory, type: . /| ani o xxxxx “*| DN?” where XXXXX is the
hostname for the signal generator. Use this same format to output SCPI commands to the signal
generator.

The i nt mai n1() function will output a sequence of commands in a program format. If you want to
run a program using a sequence of commands then perform the following:

64 Chapter 2

Programming Examples
LAN Programming Examples

1. Rename the lanio.c i nt mainl() to int main() and the original i nt main() to int
mai n1().

2. In the mai n(), openSocket () function, change the “your hostname here” string to the hostname
of the signal generator you want to control.

3. Resave the lanio.c program

4. At the UNIX prompt, type: cc -Aa -O -0 lanio lanio.c

5. At the UNIX prompt, type: ./l ani o

The program will run and output a sequence of SCPI commands to the signal generator. The UNIX

display will show a display similar to the following:

uni x machi ne: /users/nydir
$./lanio
ID Agilent Technol ogi es, E8254A, US00000001, C. 01.00

Frequency: +2.5000000000000E+09
Power Level : -5. 00000000E+000

Sockets on Windows

In Windows, the routines send() and recv() must be used, since fread() and fwrite() may not work on
sockets. The following steps outline the process for running the interactive program in the Microsoft
Visual C++ 6.0 environment:

1. Rename the lanio.c to lanio.cpp and getopt.c to getopt.cpp and add them to the Source folder of
the Visual C++ project.

Select Rebuild All from Build menu. Then select Execute Lanio.exe.
Click Start, click Programs, then click Command Prompt.

At the command prompt, cd to the directory containing the lanio.cpp file and then to the Debug
folder. For example C:\SocketIO\Lanio\Debug

5. Type in | ani 0 xxxxx “*|1 DN?” at the command prompt. For example:
C.\ Socket | O Lani o\ Debug>l ani 0 xxxxx “*| DN?” where the xxxxx is the hostname of your
signal generator. Use this format to output SCPI commands to the signal generator in a line by
line format from the command prompt.

6. Type exit at the command prompt to quit the program.

The i nt mai n1() function will output a sequence of commands in a program format. If you want to
run a program using a sequence of commands then perform the following:

1. Enter the hostname of your signal generator in the openSocket function of the mai n1() function
of the lanio.c program

2. Rename the lanio.cpp i nt mai n1() function to i nt nai n() and the original i nt mai n() function
to int mainl().

3. Select Rebuild All from Build menu. Then select Execute Lanio.exe.

Chapter 2 65

Programming Examples
LAN Programming Examples

The program will run and display the results as shown in Figure 2-2.

Figure 2-2 Program Output Screen

‘s "C:\GPIB\Test\lanio\Debug\Lanio.exe"
ID: Agilent Technologies, E82542, US00000001, C.01.00

Frequency: +2.5000000000000E+09
Power Level: -5.00000000E+000

Press any key to continue_

ceflda

Setting Parameters and Sending Queries Using Sockets and C
The following programming examples are available on the PSG Documentation CD-ROM as lanio.c and
getopt.c.

/***

* $Header: |anio.c 04/24/01

* $Revision: 1.1 $

* $Date: 04/24/01

* PROGRAM NAME: lanio.c

*

* $Description: Functions to talk to an Agilent signal generator

* via TCP/IP. Uses conmand-|ine argunents.

*

* A TCP/I P connection to port 7777 is established and

* the resultant file descriptor is used to "talk" to the
* instrunent using regul ar socket I/O nechanisnms. $

66 Chapter 2

* Exanpl es:

* Query the signal generator frequency:
* I ani o xx.xxx.xx.x ' FREQ?'

* Query the signal generator power |evel:
* lani o xx.xxx.xx.x ' PO

* Check for errors (gets one error):
* | ani 0 xX. Xxx.xx.x ‘'syst:err?

* Send a list of coomands froma file, and nunber them

* cat scpi_cnmds | lanio -n XX.XXX. XX. X

*
R R R R R R

*

* This program conpiles and runs under

* - HP-UX 10.20 (UNI X), using HP cc or gcc:

* + cc -Aa -O-o0 lanio lanio.c

* + gcc -Vall -O-o0 lanio lanio.c

*

* - Wndows 95, using Mcrosoft Visual C++ 4.0 Standard Edition

* - Wndows NT 3.51, using Mcrosoft Visual C++ 4.0

* + Be sure to add WSOCK32.LIB to your list of libraries!
* + Conpile both lanio.c and getopt.c

* + Consider re-naming the files to |anio.cpp and getopt.cpp

* Considerations:

* - On UNIX systens, file |I/O can be used on network sockets.

* Thi s makes progranmm ng very conveni ent, since routines |ike

* getc(), fgets(), fscanf() and fprintf() can be used. These

* routines typically use the |ower level read() and wite() calls.

*

* - In the Wndows environnment, file operations such as read(), wite(),
* and cl ose() cannot be assuned to work correctly when applied to

* sockets. Instead, the functions send() and recv() MJST be used.

R KKk KK KKK KK KA K KKK R KK KA KR KKK KKK KA IR A K I KA KKK KA KKK KR A KA KKK KKK KA KK IR KKKk [

/* Support both Wn32 and HP-UX UNI X environnent */

#i fdef _WN32 /* Visual C++ 6.0 will define this */
define W NSOCK

Programming Examples
LAN Programming Examples

Chapter 2

67

Programming Examples
LAN Programming Examples

#endi f

#i f ndef W NSOCK
ifndef _HPUX_SOURCE
define _HPUX_SOURCE

endif

#endi f

#i nclude <stdio. h> /* for fprintf and NULL */
#i nclude <string. h> /* for mencpy and nenset */
#include <stdlib. h> /* for malloc(), atol () */
#i ncl ude <errno. h> /* for strerror */

#i f def W NSOCK

#i ncl ude <wi ndows. h>

ifndef _W NSOCKAPI _

include <wi nsock.h> // BSDstyle socket functions
endi f

#el se /* UNIX with BSD sockets */

include <sys/socket.h> /* for connect and socket*/

include <netinet/in.h> /* for sockaddr_in */
i ncl ude <netdb. h> /* for gethostbynanme */

define SOCKET_ERROR (-1)
define | NVALI D_SOCKET (-1)

typedef int SOCKET;

#endif /* WNSOCK */

#i f def W NSOCK
/* Declared in getopt.c. See exanple prograns disk. */
extern char *optarg;
extern int optind;
extern int getopt(int argc, char * const argv[], const char* optstring);
#el se
include <unistd.h> /* for getopt(3C) */
#endi f

68 Chapter 2

Programming Examples
LAN Programming Examples

#define COMWAND_ERROR (1)
#define NO_CMD_ERROR (0)

#define SCPI _PORT 7777
#define | NPUT_BUF_SI ZE (64*1024)

[RA KA KK Ak kA kKKK KA KA KK KKK KKK KK I R A K A KKK IR KKK KA IR A KA KKK AR KKK KA KA A KA KK Ak

* Display usage

KKKk KKK KKK Kk KA KKK h A KK KA KKK KR A KA KKK KKK KA KKK KR KKK KKK KKK KKK IR KKK KKK * KKk k[

static void usage(char *basenane)

{
fprintf(stderr,"Usage: % [-nqu] <hostname> [<command>]\n", basenane);
fprintf(stderr,” % [-nqu] <hostname> < stdin\n", basenane);
fprintf(stderr,” -n, nunber output lines\n");
fprintf(stderr,"” -q, quiet; do NOT echo |ines\n");
fprintf(stderr,"” -e, show nessages in error queue when done\n");

}

#i f def W NSOCK

int init_w nsock(void)

{
WORD wWer si onRequest ed;
WBADATA wsaDat a;
int err;
wWer si onRequested = MAKEWORD(1, 1);
wWer si onRequest ed = MAKEWORD(2, 0);
err = WBASt artup(wer si onRequest ed, &wsaDat a);
if (err 1=0) {
/* Tell the user that we couldn't find a useable */
/* winsock.dll. */
fprintf(stderr, "Cannot initialize Wnsock 1.1.\n");
return -1;
}
return O;
}

Chapter 2 69

Programming Examples
LAN Programming Examples

int close_w nsock(void)

{
WBAC eanup() ;
return O;

}
#endif /* WNSOCK */

[RA KA Kk Kk kR K K KK KKK A K KKK KA KA A KR KKK KA KKK I KA KA KA KKK KA K KA IR KA KKK KR KKK h Kk x

*

> $Function: openSocket$

* $Description: open a TCP/|IP socket connection to the instrunent $

* $Paraneters: $

* (const char *) hostname Network nane of instrunent.

* This can be in dotted decimal notation.
* (int) portNumber The TCP/IP port to talk to.

* Use 7777 for the SCPI port.

*

* $Return: (int) Afile descriptor sinmilar to open(1).$
*

* $Errors: returns -1 if anything goes wong $

*

KKk KK KKK KK KK KKK R K KA A IR KKK KA K R I IR A KA KKK KA A KKK KR AR K I KKK KKK KXk XA K [

SOCKET openSocket (const char *hostnane, int portNunber)

{

struct hostent *hostPtr;
struct sockaddr_in peeraddr_in;
SOCKET s;

nenset (&oeeraddr_in, 0, sizeof(struct sockaddr_in));

[HAAF A KKK KKK KKK KK KKK KKK KKK KKK KKK KA A AKX KR KK * Kk [

/* map the desired host nane to internal form */
T
host Ptr = get host byname(host nane) ;

if (hostPtr == NULL)

{

70

Chapter 2

Programming Examples
LAN Programming Examples

fprintf(stderr,"unable to resolve hostname ' %'\n", hostnane);
return | NVALI D_SOCKET;

[REEE KKK KK KA K KKK KKk

/* create a socket */

[REEF KKK KK KKK KKK KKk

s = socket (AF_I NET, SOCK_STREAM 0);

if (s == I NVALI D_SOCKET)
{
fprintf(stderr,"unable to create socket to '%': %\n",
host nane, strerror(errno));
return | NVALI D_SOCKET;
}

nencpy(&eeraddr_i n. si n_addr.s_addr, hostPtr->h_addr, hostPtr->h_|l ength);
peeraddr _in.sin_famly = AF_| NET;
peeraddr _in.sin_port = htons((unsigned short)portNunber);

if (connect(s, (const struct sockaddr*)&peeraddr_in,
si zeof (struct sockaddr_in)) == SOCKET_ERROR)

{
fprintf(stderr,"unable to create socket to '%': %\n",
host nane, strerror(errno));
return | NVALI D_SOCKET;
}
return s;

[RA KK KK Kk K KK KKK KK KA KKK KKKk A KKK KR KKK KA I KA KA KR KKK KA KKK IR KA AKX KKK KA KKK hx

*

\

$Functi on: commandl nstrunment $

$Description: send a SCPI command to the instrument.$

$Paraneters: $

(FILE*) file pointer associated with TCP/IP socket.
(const char *command) . . SCPI command string.
$Return: (char *) a pointer to the result string.

Chapter 2 71

Programming Examples
LAN Programming Examples

*
* $Errors: returns 0 if send fails $
*
***/
int conmandl nstrunent (SOCKET sock,

const char *command)

{
int count;
/* fprintf(stderr, "Sending \"%\".\n", command); */
if (strchr(command, '\n') == NULL) {
fprintf(stderr, "Warning: mssing newine on coomand %.\n", command);
}
count = send(sock, command, strlen(command), O0);
if (count == SOCKET_ERROR) {
return COMVAND_ERROR;
}
return NO_CVD_ERROR;
}

[R AR A KK Kk K K KKK KKK KKK KKK KA KKK IR A KA KKK IR A KA KKK IR A KA KKK AR KKK KKK A AKX KKKk

* recv_line(): simlar to fgets(), but uses recv()

**/
char * recv_line(SOCKET sock, char * result, int maxLength)
#i f def W NSOCK

int cur_length = 0;

int count;

char * ptr = result;

int err = 1;

while (cur_length < maxLength) {
/* Get a byte into ptr */
count = recv(sock, ptr, 1, 0);

/* 1f no chars to read, stop. */
if (count < 1) {
br eak;

72

Chapter 2

cur_length += count;

/* If we hit a newine, stop.

if (*ptr =="\n") {
ptr++;
err = 0;
br eak;
}
ptr++;
}
*ptr = '\0";
if (err) {
return NULL;
} else {
return result;
}
#el se

[R R KA KK Kk kA K KKK KK KA KKK KKK KA KKK IR KK A KKK IR A KA KKK KA KA KKK K IR KKK KKk kK x %

* Sinpler UNI X version, using file I/O
* This denpnstrates how to use file I/0O on sockets,

KKKk KA K KKK R KKK KKK KKK A KKK IR A KA KKK KA KKK KK IR AKX KKK AR KKK KA IR KKK KKKk [

FILE * instFile;

instFile = fdopen(sock, "r+");
if (instFile == NULL)

{

fprintf(stderr, "Unable to create FILE * structure :

strerror(errno));
exit(2);
}
return fgets(result, maxLength,
#endi f

}

[R AR KR Kk Kk K K K K KK Rk KA KK KKK A KA A KR KKK KA KKK I KA KA KA KKK KA KKK IR KA KKK KKK h K hx

*

> $Function: querylnstrunent$

*

*/

instFile);

recv() version works too.

Programming Examples
LAN Programming Examples

Chapter 2

73

Programming Examples
LAN Programming Examples

* $Description: send a SCPI command to the instrunent, return a response.$

* $Paraneters: $

* (FILE*) file pointer associated with TCP/IP socket.
* (const char *command) . . SCPI command string.

* (char *result) where to put the result.

* (size_t) maxLength maxinumsize of result array in bytes.

*

* $Return: (long) The nunmber of bytes in result buffer.

*

* $Errors: returns 0 if anything goes wong. $

*

KR KKk KKK KKK KK KA KKK KR A KA KKK KKK KK IR A KA KA KKK KA KKK KA KK I KKK A A KKK Xk * kK [

| ong queryl nstrunment (SOCKET sock,

const char *command, char *result, size_t maxLength)

I ong ch;

char tnp_buf[8];

long resul tBytes = O;
int conmand_err;

int count;

[HAE KKK KKK KA KKK IR KKK KKK KKK KKK KKK A KA KKK KKK KK IR KK A KKk x*

* Send conmand to signal generator

KKK KK KA KKK KKK KKK KKK KKK KA KKK KR A KA KKK KKK A KKK K KA KR K h* K kx|

conmand_err = conmmandl nstrunent (sock, command);
if (command_err) return COMAND_ERROR;

[HAE KKK KKK KA KKK KKK KK I KKK KKK KKK A K KA KR KKK KA KKK IR AKX KK x*

* Read response from signal generator

KKK KK KKK KKK KKK KKK KKK KKK IR A KA KKK KR KKK KKK KKK KKk A x k[

count = recv(sock, tnp_buf, 1, 0); /* read 1 char */
ch = tnmp_buf[0];

if ((count < 1) || (ch == EOF) || (ch =="'\n"))

{
result = '\0"; / null termnate result for ascii */
return O;

}

/* use a do-while so we can break out */

74 Chapter 2

Programming Examples
LAN Programming Examples

do
{
if (ch =="#")
{
/* binary data encountered - figure out what it is */
long nunDigits;
| ong nunBytes = 0;
/* char length[10]; */
count = recv(sock, tnp_buf, 1, 0); /* read 1 char */
ch = tnmp_buf[0];
if ((count < 1) || (ch == EOF)) break; /* End of file */
if (ch<'0 || ch>"9") break; /* unexpected char */
nunDigits = ch - '0";
if (nunDigits)
{
/* read nunDigits bytes into result string. */
count = recv(sock, result, (int)nunDigits, 0);
result[count] = 0; /* null termnate */
nunBytes = atol (result);
}
i f (nunBytes)
{
resul tBytes = 0;
/* Loop until we get all the bytes we requested. */
/* Each call seens to return up to 1457 bytes, on HP-UX 9.05 */
do {
int rcount;
rcount = recv(sock, result, (int)nunBytes, 0);
resul tBytes += rcount;
resul t += rcount; /* Advance pointer */
} while (resultBytes < nunBytes);
[KRRk R kR Rk kR kK Rk ok kR kR kR kR kR kR Rk kKKK
* For LAN dunps, there is always an extra trailing newine
* Since there is no EO line. For ASCI| dunps this is
* great but for binary dunps, it is not needed.
Y
if (resultBytes == nunBytes)
Chapter 2 75

Programming Examples
LAN Programming Examples

{
char junk;
count = recv(sock, & unk, 1, 0);
}
}
el se
{
/* indefinite block ... dunp til we can an extra line feed */
do
{
if (recv_line(sock, result, maxLength) == NULL) break;
if (strlen(result)==1 & *result == '\n") break;
resul tBytes += strlen(result);
result += strlen(result);
} while (1);
}
}
el se
{
/* ASCI| response (not a binary block) */
*result = (char)ch;
if (recv_line(sock, result+1, maxLength-1) == NULL) return O;
/* REMOVE trailing newine, if present. And term nate string. */
resul tBytes = strlen(result);
if (result[resultBytes-1] == '\n') resultBytes -= 1;
result[resul tBytes] = '\0";
}
} while (0);

return resul t Bytes;

[RA KK KK Kk kKK KKK KK KA KKK KKK KA KKK KKK KA KKK IR KKK KKK KA KKK IR KA KKK KKk Kk ok *

*

> $Function: showErrors$

*

* $Description: Query the SCPl error queue, until enpty. Print results. $

*

76

Chapter 2

Programming Examples
LAN Programming Examples

* $Return: (void)
*
***/

voi d showErrors(SOCKET sock)

{
const char * command = "SYST: ERR?\ n";

char result_str[256];

do {
queryl nstrument (sock, command, result_str, sizeof(result_str)-1);

[HA KA Kk Kk kA K KKK KKK KKK KKK A KKK KKK IR A KA KKK KA KA KKK KR KKK KK IR AKX Kk

* Typical result_str:
* -221,"Settings conflict; Frequency span reduced."
* +0,"No error"
* Don't bother decoding.
Kok ok kR Rk kR kAR kR Rk Rk kR Rk Rk kR Rk kR kK kR kK kK Kk K
if (strncnp(result_str, "+0,", 3) == 0) {
/* Matched +0,"No error" */
br eak;
}
puts(result_str);
} while (1);

/***
*
> $Function: isQery$
*

* $Description: Test current SCPI command to see if it a query. $

*

* $Return: (unsigned char) . . . non-zero if command is a query. O if not.
*
***/

unsi gned char isQuery(char* cnd)
{

unsi gned char q = 0 ;

char *query ;

[HAE KKK KKK KKK KK KKK KKK KA KKK KA KA KKK KA KKK KA I KKK KKK Ak Kk kK [

Chapter 2 77

Programming Examples
LAN Programming Examples

/* if the command has a '?" in it, use querylnstrunent. */
/* otherw se, sinply send the command. */
/* Actual ly, we nust be a nore specific so that */

/* marker value querys are treated as conmands. */
/* Exanple: SENS: FREQ CENT (CALCl: MARK1: X?) */

[HAE KA KKK K KKK KKK KKK KKK KKK KKK KKK A KKK KA I R KK A KKKk kA Kk ok kx|

if ((query = strchr(cnd,"?")) !'= NULL)

{
/* Make sure we don't have a marker val ue query, or
* any command with a '?" followed by a ')' character.
* This kind of command is not a query fromour point of view
* The signal generator does the query internally, and uses the result.
*/
query++ ; /* bunp past '?' */
while (*query)
{
if (*query =="' ') /* attenpt to ignore white spc */
query++ ;
el se break ;
}
if (*query !'=")"")
{
q=1;
}
}
return g ;

/***

*

> $Function: main$

*

* $Description: Read command |ine argunents, and talk to signal generator.
Send query results to stdout. $

*

* $Return: (int) . . . non-zero if an error occurs

*

KKKk KKK KKK KK KA KKK KR KKK A KR K KKK KKK A IR A KA KA KKK KA KR KKK KA KKK KA KA A KKK Xk * A K [

int main(int argc, char *argv[])

{

78 Chapter 2

SOCKET i nst Sock;
char *charBuf = (char *) nall oc(| NPUT_BUF_SI ZE) ;
char *basenane;

int chr;

char command[1024] ;
char *destination;

unsi gned char quiet = 0;

unsi gned char show errs = 0;

int nunber =

basenane

= strrchr(argv[O], '/");

0;

if (basename != NULL)

basenane++ ;

el se

basenane

= argv[0];

while ((chr = getopt(argc,argv, “qune")) != EOF)

switch (chr)

{

case

case

case

case

case

"q': quiet = 1; break;

'n': nunber = 1; break ;

'e': showerrs = 1; break ;

w0

'?': usage(basenane); exit(1) ;

/* now | ook for hostnane and optional

if (optind < argc)

{

destination = argv[optind++]

strcpy(command, "");

if (optind < argc)

{

whi |

e (optind < argc) {

<command>*/

/* <host nanme> <conmmand> provi ded; only one command string */

strcat (command, argv[optind++]);

if (optind < argc) {
strcat (conmmand,
} else {
strcat (command,

")

"\'n");

Programming Examples
LAN Programming Examples

Chapter 2

79

Programming Examples
LAN Programming Examples

}
}
el se
{
/*Onl'y <hostnane> provided; input on <stdin> */
strcpy(command, "");
if (optind > argc)
{
usage(basenane) ;
exit(1);
}
}
}
el se
{
/* no hostname! */
usage(basenane) ;
exit(1);
}

[HAEF KKK KK KA KKK IR KKK A KKK KKK KA KKK KKK KA KKK IR KKK R Kk h Kk x*

/* open a socket connection to the instrunent

[HAEF A KKK KKK KK KKK KKK KA KKK KKK KKK KKK KA KKK KKK A KKK Kk h kK [

#i f def W NSOCK
if (init_wnsock() !'=0) {
exit(1);
}
#endi f /* WNSOCK */

i nst Sock = openSocket (destination, SCPI_PORT);
if (instSock == | NVALI D_SOCKET) {
fprintf(stderr, "Unable to open socket.\n");

return 1,

}
/* fprintf(stderr, "Socket opened.\n"); */

if (strlen(command) > 0)

{

[FHHEK KKK KK KA KKK IR KKK I KKK KKK KA KKK IR A KA KKK KA KA A KKK I KKK A KK

/* if the command has a '?' in it, use querylnstrunent. */

80 Chapter 2

Programming Examples
LAN Programming Examples

/* otherw se, sinply send the command. */

[HAEF KKK KK KA KKK IR KK KA KKK KKK KA KKK KKK KA KKK IR KKK KKK KKK X KK [

if (isQuery(comand))

{
| ong buf Bytes;
buf Byt es = queryl nstrunent (i nst Sock, conmand,
char Buf, | NPUT_BUF_SI ZE);
if (lquiet)
{
fwite(charBuf, bufBytes, 1, stdout);
fwite("\n", 1, 1, stdout) ;
fflush(stdout);
}
}
el se
{
conmandl nst runent (i nst Sock, conmand);
}
}
el se
{

/* read a line from<stdin> */
while (gets(charBuf) != NULL)

{
if (!strlen(charBuf))
continue ;
if (*charBuf == "#" || *charBuf =="'1")
continue ;

strcat (charBuf, "\n");

if (!quiet)
{
i f (nunber)
{
char nunf 10] ;
sprintf(num"%: ", nunber);
fwite(num strlen(num, 1, stdout);
}
fwite(charBuf, strlen(charBuf), 1, stdout) ;
fflush(stdout);

Chapter 2 81

Programming Examples
LAN Programming Examples

if (isQuery(charBuf))

{
| ong buf Byt es;
/* Put the query response into the sane buffer as the*/
/* command string appended after the null term nator.*/
buf Bytes = queryl nstrunent (i nst Sock, charBuf,
charBuf + strlen(charBuf) + 1,
I NPUT_BUF_SI ZE -strlen(charBuf));
if (!quiet)
{
fwite(" ", 2, 1, stdout) ;
fwrite(charBuf + strlen(charBuf)+1, bufBytes, 1, stdout);
fwite("\n", 1, 1, stdout) ;
fflush(stdout);
}
}
el se
{
conmand! nst runent (i nst Sock, charBuf);
}

i f (nunber) nunber++;

if (show_errs) {

showEr rors(i

#i f def W NSOCK

cl osesocket (i nst Sock) ;

cl ose_wi nsock();

#el se

cl ose(i nst Sock) ;

#endif /* WNSOCK */

return O;

nst Sock) ;

82

Chapter 2

/* End of lanio.cpp *

[R AR KK Kk kKK KKK KK KA K KKK KA KA KKK KKK K KK IR KKK KA KKK KA KKK IR KKK KA KKK KA Ak XKk [

/* $Function: mainl$ */

/* $Description: Qutput a series of SCPI commands to the signal generator */

/* Send query results to stdout. $ */
/* */
/* $Return: (int) non-zero if an error occurs */
/* */
/**/
/* Rename this int mainl() function to int main(). Re-conpile and the */
/* execute the program */

[RA KK KK K kK KK KKK KK KA KKK KKK A KKK KA KA A KKK IR KKK KA KKK KA KR KKK KKK KKK A Ak XKk [

int mainl()

{

SOCKET i nst Sock;
| ong buf Byt es;
char *charBuf = (char *) nall oc(l| NPUT_BUF_SI ZE) ;

[HHEF KKK KK KA KKK KKK I KA KKK KR K KKK KKK KKK K KKK R KKk k[

/* open a socket connection to the instrunment*/

[HAEK KKK KK KA KKK I KK I A KKK IR KKK KKK KKK KK I XKk [

#i f def W NSOCK
if (init_wnsock() !'=0) {
exit(1);
}
#endi f /* WNSOCK */

i nst Sock = openSocket ("xxxxxx", SCPlI_PORT); /* Put your hostnane here */
if (instSock == | NVALI D_SOCKET) {

fprintf(stderr, "Unable to open socket.\n");

return 1;

}
/* fprintf(stderr, "Socket opened.\n"); */

buf Bytes = queryl nstrunent (i nst Sock, "*IDN?\n", charBuf, | NPUT_BUF_SI ZE);

Programming Examples
LAN Programming Examples

Chapter 2

83

Programming Examples
LAN Programming Examples

printf("ID %\n",charBuf);

commandl nst runent (i nst Sock, "FREQ 2.5 GHz\n");

printf("\n");

buf Byt es = queryl nstrunent (i nst Sock, "FREQ CWP\ n", charBuf, | NPUT_BUF_SI ZE);
printf("Frequency: %\n", charBuf);

commandl! nst runent (i nst Sock, "POWAMPL -5 dBm n");

buf Byt es = queryl nstrunent (i nst Sock, "POW AMPL?\n", charBuf, | NPUT_BUF_SI ZE);
printf("Power Level: %\n", charBuf);

printf("\n");

#i f def W NSOCK
cl osesocket (i nst Sock) ;
cl ose_wi nsock();
#el se
cl ose(i nst Sock) ;
#endi f /* WNSOCK */

return O;

}

[R AR KR Kk Kk K R K K KK Rk KA KK KKK KA A KR KKK KA KKK IR KA KKK KKK KA IR KA KKK KKK KKk x

get opt (30) get opt (30

PROGRAM FI LE NAME: getopt.c
getopt - get option letter fromargunent vector

SYNCPSI S
int getopt(int argc, char * const argv[], const char *optstring);
extern char *optarg;
extern int optind, opterr, optopt;

PRORGAM DESCRI PTI ON:
getopt returns the next option letter in argv (starting fromargv[1])
that matches a letter in optstring. optstring is a string of
recogni zed option letters; if a letter is followed by a colon, the
option is expected to have an argunment that may or may not be
separated fromit by white space. optarg is set to point to the start
of the option argunent on return from getopt.

getopt places in optind the argv index of the next argument to be
processed. The external variable optind is initialized to 1 before

84

Chapter 2

the first call

When al |

argunent), getopt

delimt the end of the options;

options have been processed (i.e.,

Programming Examples
LAN Programming Examples

to the function getopt.

up to the first non-option

returns EOF. The special option -- can be used to

ECF is returned, and -- is skipped.

KR KKk KKK KKK Rk KA K KKK R K KA A KR KKK KA K KK IR A KA KA KKK KA KKK IR KKK KA KR KA A KKK Xk * kK [

#i ncl ude <stdio. h>

#i nclude <string. h>
char *optarg;
int optind = O;

static char *scan =
int getopt(int argc,
{

char c;

char *posn;

optarg = NULL;

if (scan NULL ||

if (optind == 0)

opti nd++;

if (optind >= argc ||

return(EOF);

char * const argv[],

/* For NULL, EOF */
/* For strchr() */

/* d obal argument pointer. */
/* dobal argv index. */
NULL; /* Private scan pointer. */

const char* optstring)

*scan == '\0") {

argv[optind][0] !="-"' || argv[optind][1] == '\0")

if (strcnp(argv[optind], "--")==0) {
opti nd++;
return(EOF);
}
scan = argv[optind] +1;
opti nd++;
}
C = *scan++;
posn = strchr(optstring, c); /* DDP */
Chapter 2 85

Programming Examples
LAN Programming Examples

if (posn == NULL || ¢ ==":") {
fprintf(stderr, "%: unknown option -%\n", argv[0], c);

return('?");

}
posn++;
if (*posn == ":") {
if (*scan !'="'\0") {
optarg = scan;
scan = NULL;
} else {
optarg = argv[optind];
opti nd++;
}
}
return(c);

}

Sockets LAN Programming Using PERL

This example uses PERL script to control the signal generator over the sockets LAN interface. The
signal generator power level is set to - 5 dBm, queried for operation complete and then queried for
it’s identify string. This example was developed using PERL version 5.6.0 and requires a PERL
version with the I0::Socket library. This example is available on the PSG Documentation CD-ROM as
perl.txt.

1. In the code below, enter your signal generator’s hostname in place of the XXxXX in the code line:
ny $i nstrunment Name= “xxxxx”;

2. Save the code using the filename | anper| .

3. Run the program by typing perl |anper| at the UNIX term window prompt.

Setting the Power Level and Sending Queries Using PERL

#1/ usr/ bin/ perl

PROGRAM NAME: perl . txt

Exanple of talking to the signal generator via SCPl-over-sockets
#

use 1O : Socket ;

Change to your instrument's name

ny $instrument Name = "xxxxx";

Get socket
$sock = new | O : Socket:: I NET (Peer Addr => $instrunent Nane,
Peer Port => 7777,

86 Chapter 2

Proto => "tcp',

)

di e "Socket Could not be created, Reason: $!\n" unless $sock;

Set freq
print "Setting frequency...\n";
print $sock "freq 1 GHz\n";

Wait for conpletion

print "Waiting for source to settle...\n";

print $sock "*opc?\n";

ny $response = <$sock>;

chonmp $response; # Renpves new ine fromresponse
if ($response ne "1")

{

die "Bad response to '*OPC?" frominstrunent!\n";

Send identification query

print $sock "*IDN?\n";

$response = <$sock>;

chomp $response;

print "Instrument |ID: $response\n”;

Sockets LAN Programming Using Java

Programming Examples
LAN Programming Examples

In this example the Java program connects to the signal generator via sockets LAN. This program
requires Java version 1.1 or later be installed on your PC. To run the program perform the following

steps:

1. In the code example below, type in the hostname or IP address of your signal generator. For

example, String instrunment Name = (your signal generator’s hostname).

2. Copy the program as Scpi SockTest.java and save it in a convenient directory on your
computer. For example save the file to the C:\j dk1l. 3. 0_2\ bi n\j avac directory.

Run the Command Prompt program on your computer. Click Start > Programs > Command Prompt.

Compile the program. At the command prompt type: j avac Scpi SockTest. | ava.

The directory path for the Java compiler must be specified. For example:

C \>jdk1l.3.0_2\bhin\javac Scpi SockTest.java

Run the program by typing j ava Scpi SockTest at the command prompt.

Type exit at the command prompt to end the program.

Generating a CW Signal Using Java

The following program example is available on the PSG Documentation CD-ROM as javaex.txt.

Chapter 2

87

Programming Examples
LAN Programming Examples

[R R R K Kk kA kK KK KK KA K KKK KAk A KR KKK KA KKK I KA KA KKK KR KKK KK IR KA A KKK KKK h Kk x

/| PROGRAM NAME: | avaex. t xt /'l Sanple java
programto talk to the signal generator via SCPI-over-sockets

/1 This programrequires Java version 1.1 or later.

/1 Save this code as Scpi SockTest.|ava

/1 Conpile by typing: javac Scpi SockTest.java

/1 Run by typing: java Scpi SockTest

/'l The signal generator is set for 1 GHz and queried for its id string

[FF R Rk Rk ko kK KK KK KA K KKK KAk A A KKK KKK KA KKK I KA KA KKK KKK KK IR KKK KKK KKK h Kk x

inport java.io.*;
inport java.net.*;
cl ass Scpi SockTest
{
public static void main(String[] args)
{
String instrunmentName = "Xxxxx"; /1 Put your hostnanme here
try
{
Socket t = new Socket (i nstrunment Nane, 7777); // Connect to instrunent
// Setup read/wite mechani sm
Buf feredWiter out =
new Buf feredWiter(
new Qut put StreanWiter(t.getQutputStrean()));
Buf f eredReader in =
new Buf f er edReader (
new | nput StreanReader (t. getlnputStream()));
Systemout.println("Setting frequency to 1 GHz...");

out.wite("freq 1GHz\n"); /1l Sets frequency

out. flush();

Systemout.println("Witing for source to settle...");
out.wite("*opc?\n"); /1 Waits for conpletion
out. flush();

String opcResponse = in.readLine();
if (!opcResponse. equal s("1"))
{
Systemerr.println("lnvalid response to '*OPC?' I");
Systemexit(1);

}
Systemout.println("Retrieving instrument ID...");
out.wite("*idn?\n"); /1 Querys the id string
out. flush();
String i dnResponse = in.readLine(); // Reads the id string

88 Chapter 2

Programming Examples
RS-232 Programming Examples

// Prints the id string

Systemout.println("Instrument ID: " + idnResponse);
}

catch (1 OException e)

{

Systemout.printin("Error" + e);

}

RS-232 Programming Examples
¢ “Interface Check Using Agilent BASIC” on page 89

¢ “Interface Check Using VISA and C” on page 90
¢ “Queries Using Agilent BASIC” on page 92
¢ “Queries Using VISA and C” on page 93

Before Using the Examples

On the signal generator select the following settings:

¢ Baud Rate - 9600 must match computer’s baud rate
¢ Transmit Pace - None

* Receive Pace - None

e RTS/CTS - None

e RS-232 Echo - Off

Interface Check Using Agilent BASIC

This example program causes the signal generator to perform an instrument reset. The SCPI
command *RST will place the signal generator into a pre-defined state.

The serial interface address for the signal generator in this example is 9. The serial port used is
COMI1 (Serial A on some computers). Refer to “Using RS-232” on page 23 for more information.

’

Watch for the signal generator’s Listen annunciator (L) and the ‘remote preset...” message on the
front panel display. If there is no indication, check that the RS-232 cable is properly connected to
the computer serial port and that the manual setup listed above is correct.

If the compiler displays an error message, or the program hangs, it is possible that the program was
typed incorrectly. Press the signal generator’s Reset RS-232 softkey and re-run the program. Refer to
“If You Have Problems” on page 8 for more help.

Chapter 2 89

Programming Examples
RS-232 Programming Examples

The following program example is available on the PSG Documentation CD-ROM as rs232ex1.txt.

10 [k kR kR kR Rk Rk kR kK kR kR Rk kR Rk kR kR Rk kR kR kR Rk Rk K Rk
20 !

30 I PROGRAM NAME: rs232exl. txt

40 !

50 ! PROGRAM DESCRI PTION: This programverifies that the RS-232 connections and
60 ! interface are functional.

70 !

80 I Connect the UNI X workstation to the signal generator using an RS-232 cable
90 !

100 !

110 ! Run Agilent BASIC, type in the followi ng conmands and then RUN the program
120 !

130 !

TAQ IR R AR R Rk Rk kR R KRRk kR KRRk KRR KRRk KRR KR K KRR KKKk KR KKK R R KR KR
150 !

160 I NTEGER Num

170 CONTROL 9,0;1 | Resets the RS-232 interface

180 CONTRCOL 9, 3; 9600 | Sets the baud rate to match the sig gen

190 STATUS 9, 4; St at ! Reads the value of register 4

200 Num=BlI NAND(St at, 7) ! Gets the AND val ue

210 CONTRCL 9, 4; Num ! Sets parity to NONE

220 QUTPUT 9; "*RST" ! Qutputs reset to the sig gen

230 END ! End the program

Interface Check Using VISA and C

This program uses VISA library functions to communicate with the signal generator. The program
verifies that the RS-232 connections and interface are functional. In this example the COM2 port is
used. The serial port is referred to in the VISA library as ‘ASRL1’ or ‘ASRL2’ depending on the
computer serial port you are using. Start Microsoft Visual C++, add the required files, and enter the
following code into the .cpp source file.

The following program example is available on the PSG Documentation CD-ROM as rs232ex1.cpp.

[AR AR kR KRR AR KRRk AR KRR KRR KRR KK AR K Rk

/1 PROGRAM NAME: rs232ex1. cpp

11

/1 PROGRAM DESCRI PTI ON: This code exanpl e uses the RS-232 serial interface to

/1 control the signal generator.

11

/1 Connect the conputer to the signal generator using an RS-232 serial cable.

/1 The user is asked to set the signal generator for a 0 dBm power |evel

/1 A reset command *RST is sent to the signal generator via the RS-232

/Il interface and the power level will reset to the -135 dBm | evel.The default

90 Chapter 2

Programming Examples
RS-232 Programming Examples

|/ attributes e.g. 9600 baud, no parity, 8 data bits,1 stop bit are used.
/1 These attributes can be changed using VI SA functions.

11

/1 | MPORTANT: Set the signal generator BAUD rate to 9600 for this test

[FF KKK Kk kK kK KK KK KA KK KKK Kk A A K KKK R KKK KA KKk A KR K IR A KKK KKK A KR K IR KKK KKK A AR A KKK IR KK A Kk

#i ncl ude <visa. h>
#i ncl ude <stdio. h>
#i ncl ude " St dAf x. h"
#include <stdlib. h>
#i ncl ude <conio. h>

void main ()

{

int baud=9600;// Set baud rate to 9600
printf("Manually set the signal generator power level to O dBmn");
printf("\n");
printf("Press any key to continue\n");
getch();
printf("\n");
Vi Session defaul tRM vi;// Declares a variable of type ViSession
/1 for instrument communication on COM 2 port
Vi Status vi Status = 0;
/| Opens session to RS-232 device at serial port 2
vi St at us=vi OpenDef aul t RM &def aul t RM ;
vi St at us=vi Open(defaul tRM "ASRL2::INSTR', VI_NULL, VI_NULL, &vi);

if(viStatus){// |f operation fails, pronpt user
printf("Could not open ViSession!\n");
printf("Check instruments and connections\n");
printf("\n");
exit(0);}
/1 initialize device
vi St at us=vi Enabl eEvent (vi, VI_EVENT_I O COVPLETI ON, VI _QUEUE, VI _NULL);

viCear(vi);// Sends device clear command

/1 Set attributes for the session

vi Set Attribute(vi,VI_ATTR_ASRL_BAUD, baud) ;
vi Set Attribute(vi,VI_ATTR_ASRL_DATA BI TS, 8);

viPrintf(vi, "*RST\n");// Resets the signal generator

Chapter 2 91

Programming Examples
RS-232 Programming Examples

printf("The signal
printf("Power |evel

generator has been reset\n");
shoul d be -135 dBmn");

printf("\n");// Prints new line character to the display

vi Close(vi);// C oses session

vi Cl ose(defaul tRM;// O oses default session

}

Queries Using Agilent BASIC

This example program demonstrates signal generator query commands over RS-232. Query commands
are of the type *|I DN? and are identified by the question mark that follows the mnemonic.

Start Agilent BASIC, type in the following commands, and then RUN the program:

The following program example is available on the PSG Documentation CD-ROM as rs232ex2.txt.

10 A R R KRk R R KKK KR KRR R R KRR R R KRR R kKRR R KR KRRk K R KRR K R K KKK K
20 !

30 ! PROGRAM NAME: rs232ex2. txt

40 !

50 ! PROGRAM DESCRI PTION: In this exanple, query commands are used to read

60 ! data fromthe signal generator.

70 !

80 ! Start Agilent BASIC, type in the followi ng code and then RUN the program

90 !

D00 I RR AR KRRk kR R KKk kR R KRRk kKRR KRRk KR KRR K KRR KR K R KR K R R KKK K R Kk
110 !

120 I NTEGER Num

130 DI M St r$[200], Str1$[20]

140 CONTROL 9,0;1 Resets the RS-232 interface

150 CONTRCOL 9, 3; 9600 Sets the baud rate to match signal generator rate
160 STATUS 9, 4; St at Reads the val ue of register 4

170 Num=Bl NAND(St at , 7) Gets the AND val ue

180 CONTRCL 9, 4; Num Sets the parity to NONE

190 QUTPUT 9; "*| DN?" Querys the sig gen ID

200 ENTER 9; Str$ Reads the 1D

210 WAIT 2 Waits 2 seconds

220 PRINT "ID =",Str$ Prints IDto the screen

230 QUTPUT 9; "POW AMPL -5 dbnt Sets the the power level to -5 dbm

240 QUTPUT 9; " PONP" Querys the power |evel of the sig gen

250 ENTER 9; Str1$ Reads the queried val ue

260 PRI NT "Power = ",Stri1$ Prints the power level to the screen

270 END End the program

92 Chapter 2

Programming Examples
RS-232 Programming Examples

Queries Using VISA and C

This example uses VISA library functions to communicate with the signal generator. The program

verifies that the RS-232 connections and interface are functional. Start Microsoft Visual C++, add the

required files, and enter the following code into your .cpp source file.

The following program example is available on the PSG Documentation CD-ROM as rs232ex2.cpp.

[] F kK Kk k ok ok ok ok ok ok ok ok ok ok ok ok kK kK ok ko kK Kk kK ok ok ok k kR k kK ok ok Rk kR kK ok ok ok k kR kK ok k ok Rk kR ok ok k kK k ok Rk ok ok k ok ok kK K kK

11

/1 PROGRAM NAME: rs232ex2. cpp

11

/1 PROGRAM DESCRI PTI ON: This code exanpl e uses the RS-232 serial interface to control
/1 the signal generator.

11

/1 Connect the conputer to the signal generator using the RS-232 serial cable

/1 and enter the follow ng code into the project .cpp source file.

/1 The program queries the signal generator ID string and sets and queries the power
Il level. Query results are printed to the screen. The default attributes e.g. 9600 baud,
/] parity, 8 data bits,1 stop bit are used. These attributes can be changed using VI SA
/1 functions.

/1

/1 1 MPORTANT: Set the signal generator BAUD rate to 9600 for this test

[] KKk Kk ok ok k k ok ok ok ok k ok ok ok ok k kK k kK k ok k ok kk kK k ok kk kK k kR ok ok k ok ok k ok ok k kK k ok k ok k ok ok k ok ok k ok ok k ok ok ok ok ok ok ok ok k kK k kK

#i ncl ude <visa. h>
#i ncl ude <stdio. h>
#i ncl ude " St dAf x. h"
#i nclude <stdlib. h>
#i ncl ude <coni o. h>

#defi ne MAX_COUNT 200
int main (void)

{

Vi Statusstatus; // Declares a type ViStatus variable

Vi Sessi ondefaul tRM instr;// Declares type Vi Session variabl es
Vi Ul nt32retCount; // Return count for string I/O

Vi Char buf fer [MAX_COUNT] ;// Buffer for string I/0O

status = vi OpenDef aul tRM &lefaultRM;// Initializes the system
/1 Open comunication with Serial Port 2
status = vi Open(defaul tRM "ASRL2::INSTR', VI_NULL, VI_NULL, &instr);

Chapter 2

Programming Examples
RS-232 Programming Examples

if(status){// If problens, then pronpt user
printf("Could not open ViSession!\n");
printf("Check instruments and connections\n");
printf("\n");

exit(0);}

/1l Set tinmeout for 5 seconds

vi Set Attribute(instr, VI_ATTR_TMO VALUE, 5000);
/'l Asks for sig gen ID string
status = viWite(instr, (ViBuf)"*IDN?\n", 6, &retCount);

/! Reads the sig gen response

status = vi Read(instr, (ViBuf)buffer, MAX_COUNT, &retCount);
buffer[retCount]= "\0";// Indicates the end of the string
printf("Signal Generator ID: "); // Prints header for ID
printf(buffer);// Prints the ID string to the screen
printf("\n");// Prints carriage return

/1 Flush the read buffer

/'l Sets sig gen power to -5dbm

status = viWite(instr, (ViBuf)"PONAWL -5dbmn", 15, &retCount);
/1 Querys the sig gen for power |evel

status = viWite(instr, (ViBuf)"PON\n",5, & etCount);

/'l Read the power |evel

status = vi Read(instr, (ViBuf)buffer, MAX COUNT, &retCount);
buffer[retCount]= "\0";// Indicates the end of the string
printf("Power level = ");// Prints header to the screen
printf(buffer);// Prints the queried power |evel
printf("\n");

status = viC ose(instr);// C ose down the system

status = vi Cl ose(defaul tRV;

return O;

}

94

Chapter 2

3 Programming the Status Register System

This chapter provides the following major sections:

« “Overview” on page 95

« “Status Register Bit Values’ on page 99

« “Accessing Status Register Information” on page 99

« “Status Byte Group” on page 104

o “Status Groups’ on page 106

Overview

NOTE

For the E8257D analog signal generator, some of the status bits and registers are not
applicable for the E8257D and are always set to zero. These bits and registers are shown in
the following list:

Standard Operation Condition Register: Bits 0 and 10. Refer to Table 3-5, “Standard
Operation Condition Register Bits,” on page 109.

Baseband Operation Condition Register: All

Data Questionable Condition Register: Bit 8. Refer to Table 3-7, “Data Questionable
Condition Register Bits,” on page 116.

Data Questionable Power Condition Register: Bit 2. Refer to Table 3-8, “Data Questionable
Power Condition Register Bits,” on page 119.

Data Questionable Frequency Condition Register: Bit 3. Refer to Table 3-9, “Data
Questionable Frequency Condition Register Bits,” on page 122.

Data Questionable Calibration Condition Register: Bit 1. Refer to Table 3-11, “Data
Questionable Calibration Condition Register Bits,” on page 128.

¢ Data Questionable Bert Condition Register: All

During remote operation, you may need to monitor the status of the signal generator for error
conditions or status changes. The signal generator’s error queue can be read with the SCPI query
:SYSTem:ERRor? (Refer to “:ERRor[:NEXT]” in the SCPI command reference guide) to see if any
errors have occurred. An alternative method uses the signal generator’s status register system to
monitor error conditions and/or condition changes.

Chapter 3

95

Programming the Status Register System
Overview

The signal generator’s status register system provides two major advantages:

* You can monitor the settling of the signal generator using the settling bit of the Standard
Operation Status Group’s condition register.

* You can use the service request (SRQ) interrupt technique to avoid status polling, therefore giving
a speed advantage.

The signal generator’s instrument status system provides complete SCPI standard data structures for
reporting instrument status using the register model.

The SCPI register model of the status system has multiple registers that are arranged in a
hierarchical order. The lower-level status registers propagate data to the higher-level registers using
summary bits. The Status Byte Register is at the top of the hierarchy and contains the status
information for lower level registers.

The lower level status registers monitor specific events or conditions, and are grouped according to
their functionality. For example, the Data Questionable Frequency Status Group consists of five
registers. This chapter may refer to a group as a register so that the cumbersome correct description
is avoided. For example, the Standard Operation Status Group’s Condition Register can be referred to
as the Standard Operation Status register. Refer to “Status Groups” on page 106 for more
information.

Figure 3-1 and Figure 3-2 show the signal generator’s status byte register system and hierarchy.

The status register system uses IEEE 488.2 commands (those beginning with *) to access the
higher-level summary registers. Lower-level registers can be accessed using STATus SCPI commands.

96 Chapter 3

Figure 3-1

Data Questionable Power Status Group

Data Quest. Freq

Synth. Unlocked o 0

10 MHz Ref Unlocked - 1

1 GHz Ref Unlocked o 2

Baseband 1 Unlocked o 3
Unused o 4 gl
Sampler Loop Unlocked 4 & T
YO Loop Unlocked -{ & gl
Unused 4 7 =
Unused - 8 2|e
Unused o 9@ 2 E‘-
Unused 10 8 =

Unused —{11

Unused {12

Unused 413

Unused —14

Data Quest. Modul

Modulation Uncalibrated —

Data Quest. Cali

fQCalibration Failure -

R.BP Tripped o

Unleveled o
Unused
Unused -
Unused -
Unused o
Unused -
Unused —
Unused -
Unused -
Unused -
Unused <
Unused <
Unused —
Unused -
Always Zero (0) o

NEON2ODR-IDH AW 2O

Always Zero (0) 415

Mod 1 Undermod 4 0
Mod 1 Overmod o
Maod 2 Undermod
Med 2 Overmod

]
2
3
4
Unused o &
6
7
8

Unused =
Unused
Unused =
Unused 4 &
Unused 10
Unused < 11
Unused 12
Unused 413

Unused 14
Always Zero (0) 415

DCFMIDCEM
Zero Failure o

Unused =
Unused
Unused
Unused
Unused
Unused
Unused -
Unused —
Unused 410
Unused - 11
Unused 12
Unused 412
Unused 414

1 |

IDCCI"-.IG!U‘!L(.\)I\)—'-D|

EOHEI%IO n éeg |s:er

(+)Trans Filter

(- JTrans Filter

Event Register

W

nable Reg

The Overall Status Byte Register System (1 of 2)

Programming the Status Register System
Overview

(®

To Data Quesiionable Stotus Group #3

ency Status Group

(-)Trans Filter

Event Register
Event Enable Reg

ation Status Group

9_

To Data Quesfionable Status Group #5

To Data Questicnable Status Group #7

To Dota Questionable Status Group #8

Condition Register
(+)Trans Filter

(-)Trans Filter

Event Register
EventEnable Reg.

®_

W

bration Status Group

Condition Register
(+)Trans Filter

(-)Trans Filter

Event Register
Event Enable Reg.

®_

Always Zero (0) ~£

W

To, Standard Operation Status Group #1C

Baseband Operation Status Group

Baseband 1 Busy
Baseband 1 Communicating
Unused

Unused

Unused

Unused

Unused

Unused

Unused

Unused

Unused

Unused

Unused

Unused

nused

U
Always Zero (0) {15}

egisier

© @~ O RO
Event Register
nable Keg

(- JTrans Filter
wvent

(+)Trans Filter

Condition

Chapter 3

97

Programming the Status Register System
Overview

Figure 3-2

From Data Questionable Power Status Group

From Data Quest. Frequency Status Group

From Data Quest. Modulation Status Group

From Data Quest Calibration Status Group

From Baseband Operation Status Group —

BERT SYNChronizing—

Data Questionable
Status Group

Unused —
Unused —
Unused —

(summary) —

TEMPerature _|
(QVEN COLD)

(surmmary)—
Unused —
(summary)—|

(summary)—
SELFtest—|
Unused —
Unused —
Unused —
Unused —
Unused —

Always Zero (0)—

LI I I L L I L I]

i)

10
11
12
13
14
15

The Overall Status Byte Register System (2 of 2)

Status Byte Register

Error/Event Queue Summary Bit
Data Questionable Status Summary Bit

Std. Operation Status Su

(+)Trans Filter

(-)Trans Filter

Event Register
Event Enable Reg.

Standard Event Status Group

Oper. Complete -
Req. Bus Control <
Query Error o
Dev. Dep. Error o
Execution Error
Command Error
User Request -
Power On

Standard Op

1/Q CALibrating —
Settling —

Unused —
SWEeping —
MEASUring —
Waiting for TRIGer —
Unused —

Unused —

Unused —

DCEM/DCIM _
Mull in Progress

Baseband is Busy—
Sweep Calculating—

Unused—
Unused=]

(=]

11
12
13
14

Always Zero (0)—

|-JG!U‘|-F~¢->N-A-O

1]
-

LOOJ‘JO':U‘!-PQI\J-Ol

15

gister
Event Enable Reg.

Event Re:

egister

rans Fiiter
rans Fiiter

ven
Event Enable Reg.

T

Message Available (MAV)
]

Std. Event Status Sum. Bit

Unused| o
Unused| 1
2
3
4
s .
& M9
m.Bit] 7 —:
i
1
1
J
+

ation Status Group

[
Reg Serv. Sum. Bit (RQS)
1

)

Service Request
Enable Register

98

Chapter 3

Programming the Status Register System
Status Register Bit Values

Status Register Bit Values

Each bit in a register is represented by a decimal value based on its location in the register (see
Table 3-1).

¢ To enable a particular bit in a register, send its value with the SCPI command. Refer to the signal
generator’s SCPI command listing for more information.

¢ To enable more than one bit, send the sum of all the bits that you want to enable.

¢ To verify the bits set in a register, query the register.

Example: Enable a Register

To enable bit 0 and bit 6 of the Standard Event Status Group’s Event Register:

1. Add the decimal value of bit O (1) and the decimal value of bit 6 (64) to give a decimal value of
65.

2. Send the sum with the command: *ESE 65.

Example: Query a Register

To query a register for a condition, send a SCPI query command. For example, if you want to query
the Standard Operation Status Group’s Condition Register, send the command:

STATus:OPERation:CONDition?

If bit 7, bit 3 and bit 2 in this register are set (bits=1) then the query will return the decimal value
140. The value represents the decimal values of bit 7, bit 3 and bit 2: 128 + 8 + 4 = 140.

Table 3-1 Status Register Bit Decimal Values

o | ¥ |a | | | |||l |F|a|o|0|[]|«a|~
i 2 |3 |2 |8 |2 |2 |2|8|2|°|"|"
Decimal 2 |8 |x |[F |§& |=
Value =
=
<

Bit Number 15 14 13 12 11 10 9 (8|7 (6 |5 |4 |3 |2 |1]0

NOTE Bit 15 is not used and is always set to zero.

Accessing Status Register Information

1. Determine which register contains the bit that reports the condition. Refer to Figure 3-1 on
page 97 or Figure 3-2 on page 98 for register location and names.

2. Send the unique SCPI query that reads that register.

3. Examine the bit to see if the condition has changed.

Chapter 3 99

Programming the Status Register System
Accessing Status Register Information

Determining What to Monitor

You can monitor the following conditions:

e current signal generator hardware and firmware status
¢ whether a particular condition (bit) has occurred

Monitoring Current Signal Generator Hardware and Firmware Status

To monitor the signal generator’s operating status, you can query the condition registers. These
registers represent the current state of the signal generator and are updated in real time. When the
condition monitored by a particular bit becomes true, the bit sets to 1. When the condition becomes
false, the bit resets to 0.

Monitoring Whether a Condition (Bit) has Changed

The transition registers determine which bit transition (condition change) should be recorded as an
event. The transitions can be positive to negative, negative to positive, or both. To monitor a certain
condition, enable the bit associated with the condition in the associated positive and negative
registers.

Once you have enabled a bit via the transition registers, the signal generator monitors it for a change
in its condition. If this change in condition occurs, the corresponding bit in the event register will be
set to 1. When a bit becomes true (set to 1) in the event register, it stays set until the event register
is read or is cleared. You can thus query the event register for a condition even if that condition no
longer exists.

The event register can be cleared only by querying its contents or sending the *CLS command, which
clears all event registers.

Monitoring When a Condition (Bit) Changes

Once you enable a bit, the signal generator monitors it for a change in its condition. The transition
registers are preset to register positive transitions (a change going from 0 to 1). This can be changed
so the selected bit is detected if it goes from true to false (negative transition), or if either transition
occurs.

Deciding How to Monitor

You can use either of two methods described below to access the information in status registers (both
methods allow you to monitor one or more conditions).

e The polling method

In the polling method, the signal generator has a passive role. It tells the controller that
conditions have changed only when the controller asks the right question. This is accomplished by
a program loop that continually sends a query.

The polling method works well if you do not need to know about changes the moment they occur.
Use polling in the following situations:

— when you use a programming language/development environment or I/O interface that does
not support SRQ interrupts

— when you want to write a simple, single- purpose program and don’t want the added
complexity of setting up an SRQ handler

100 Chapter 3

Programming the Status Register System
Accessing Status Register Information

¢ The service request (SRQ) method

In the SRQ method (described in the following section), the signal generator takes a more active
role. It tells the controller when there has been a condition change without the controller asking.

Use the SRQ method if you must know immediately when a condition changes. (To detect a
change using the polling method, the program must repeatedly read the registers.) Use the SRQ
method in the following situations:

— when you need time-critical notification of changes

— when you are monitoring more than one device that supports SRQs

— when you need to have the controller do something else while waiting
— when you can’t afford the performance penalty inherent to polling

Using the Service Request (SRQ) Method

The programming language, I/0O interface, and programming environment must support SRQ
interrupts (for example: BASIC or VISA used with GPIB and VXI-11 over the LAN). Using this
method, you must do the following:

Determine which bit monitors the condition.

Send commands to enable the bit that monitors the condition (transition registers).

1
2
3. Send commands to enable the summary bits that report the condition (event enable registers).
4. Send commands to enable the status byte register to monitor the condition.

5

Enable the controller to respond to service requests.

The controller responds to the SRQ as soon as it occurs. As a result, the time the controller would
otherwise have used to monitor the condition, as in a loop method, can be used to perform other
tasks. The application determines how the controller responds to the SRQ.

When a condition changes and that condition has been enabled, the RQS bit in the status byte
register is set. In order for the controller to respond to the change, the Service Request Enable
Register needs to be enabled for the bit(s) that will trigger the SRQ.

Generating a Service Request

The Service Request Enable Register lets you choose the bits in the Status Byte Register that will
trigger a service request. Send the *SRE <num> command where <num> is the sum of the decimal
values of the bits you want to enable.

For example, to enable bit 7 on the Status Byte Register (so that whenever the Standard Operation
Status register summary bit is set to 1, a service request is generated) send the command *SRE 128.
Refer to Figure 3-1 on page 97 or Figure 3-2 on page 98 for bit positions and values.

The query command *SRE? returns the decimal value of the sum of the bits previously enabled with
the *SRE <num> command.

To query the Status Byte Register, send the command *STB?. The response will be the decimal sum
of the bits which are set to 1. For example, if bit 7 and bit 3 are set, the decimal sum will be 136
(bit 7=128 and bit 3=8).

NOTE Multiple Status Byte Register bits can assert an SRQ, however only one bit at a time can set
the RQS bit. All bits that are asserting an SRQ will be read as part of the status byte when
it is queried or serial polled.

Chapter 3 101

Programming the Status Register System
Accessing Status Register Information

The SRQ process asserts SRQ as true and sets the status byte’s RQS bit to 1. Both actions are
necessary to inform the controller that the signal generator requires service. Asserting SRQ informs
the controller that some device on the bus requires service. Setting the RQS bit allows the controller
to determine which signal generator requires service.

This process is initiated if both of the following conditions are true:
* The corresponding bit of the Service Request Enable Register is also set to 1.
* The signal generator does not have a service request pending.

A service request is considered to be pending between the time the signal generator’s SRQ
process is initiated and the time the controller reads the status byte register.

If a program enables the controller to detect and respond to service requests, it should instruct the
controller to perform a serial poll when SRQ is true. Each device on the bus returns the contents of
its status byteregister in response to this poll. The device whose request service summary bit (RQS)
bit is set to 1 is the device that requested service.

NOTE When you read the signal generator’s Status Byte Register with a serial poll, the RQS bit is
reset to 0. Other bits in the register are not affected.

If the status register is configured to SRQ on end-of-sweep or measurement and the mode
set to continuous, restarting the measurement (INIT command) can cause the measuring bit
to pulse low. This causes an SRQ when you have not actually reached the “end- of-sweep” or
measurement condition. To avoid this, do the following:

1. Send the command | Nl Ti at e: CONTi nuous CFF.

2. Set/enable the status registers.

3. Restart the measurement (send INIT).

Status Register SCPI Commands

Most monitoring of signal generator conditions is done at the highest level, using the IEEE 488.2
common commands listed below. You can set and query individual status registers using the
commands in the STATus subsystem.

*CLS (clear status) clears the Status Byte Register by emptying the error queue and clearing all
the event registers.

*ESE, *ESE? (event status enable) sets and queries the bits in the Standard Event Enable Register
which is part of the Standard Event Status Group.

*ESR? (event status register) queries and clears the Standard Event Status Register which is part
of the Standard Event Status Group.

*OPC, *OPC? (operation complete) sets bit #0 in the Standard Event Status Register to 1 when all
commands have completed. The query stops any new commands from being processed until the
current processing is complete, then returns a 1.

*PSC, *PSC? (power-on state clear) sets the power-on state so that it clears the Service Request
Enable Register, the Standard Event Status Enable Register, and device-specific event enable
registers at power on. The query returns the flag setting from the *PSC command.

102 Chapter 3

Programming the Status Register System
Accessing Status Register Information

*SRE, *SRE? (service request enable) sets and queries the value of the Service Request Enable
Register.

*STB? (status byte) queries the value of the status byte register without erasing its contents.

:STATus:PRESet presets all transition filters, non-IEEE 488.2 enable registers, and error/event
queue enable registers. (Refer to Table 3-2.)

Table 3-2 Effects of :STATus:PRESet

Register Value after
:STATus:PRESet

:STATus:OPERation:ENABle 0
:STATus:OPERation:NTRansition 0
:STATus:OPERation:PTRransition 32767
:STATus:OPERation:BASeband:ENABIle 0
:STATus:OPERation:BASeband:NTRansition 0
:STATus:OPERation:BASeband:PTRransition 32767
:STATus:QUEStionable:CALibration:ENABIle 32767
:STATus:QUEStionable:CALibration:NTRansition 32767
:STATus:QUEStionable:CALibration:PTRansition 32767
:STATus:QUEStionable:ENABle 0
:STATus:QUEStionable:NTRansition 0
:STATus:QUEStionable:PTRansition 32767
:STATus:QUEStionable:FREQuency:ENABIle 32767
:STATus:QUEStionable:FREQuency:NTRansition 32767
:STATus:QUEStionable:FREQuency:PTRansition 32767
:STATus:QUEStionable:MODulation:ENABIle 32767
:STATus:QUEStionable:MODulation:NTRansition 32767
:STATus:QUEStionable:MODulation:PTRansition 32767
:STATus:QUEStionable:POWer:ENABIle 32767
:STATus:QUEStionable:POWer:NTRansition 32767
:STATus:QUEStionable:POWer:PTRansition 32767

Chapter 3 103

Programming the Status Register System
Status Byte Group

Status Byte Group
The Status Byte Group includes the Status Byte Register and the Service Request Enable Register.

Status Byte Register
0 | Unused
1 | Unused
2 | Error/Event Queue Summary Bit
3 | Data Questionable Summary Bit
4 | Message Available (MAV)
5 | Standard Event Summary Bit
po===---- #»| 6 | Request Service (RQS)
1
i 7 | Operation Status Summary Bit
)
]
]
|
)
PSP M A S S S Bl
]
\ {
1
(85 |
lr 2) i
A C&\ i
i g&\ !
-
b @
A ®
i '
&
T
0[1]12]|3|4]|5]|6] 7| Service Request Enable Register

ck721a

104 Chapter 3

Programming the Status Register System
Status Byte Group

Status Byte Register
Table 3-3 Status Byte Register Bits
Bit Description

0,1 Unused. These bits are always set to 0.

2 Error/Event Queue Summary Bit. A 1 in this bit position indicates that the SCPI error queue is not empty; the SCPI
error queue contains at least one error message.

3 Data Questionable Status Summary Bit. A 1 in this bit position indicates that the Data Questionable summary bit has
been set. The Data Questionable Event Register can then be read to determine the specific condition that caused this
bit to be set.

4 Message Available. A 1 in this bit position indicates that the signal generator has data ready in the output queue.
There are no lower status groups that provide input to this bit.

5 Standard Event Status Summary Bit. A 1 in this bit position indicates that the Standard Event summary bit has been
set. The Standard Event Status Register can then be read to determine the specific event that caused this bit to be set.

6 Request Service (RQS) Summary Bit. A 1 in this bit position indicates that the signal generator has at least one
reason to require service. This bit is also called the Master Summary Status bit (MSS). The individual bits in the Status
Byte are individually ANDed with their corresponding service request enable register, then each individual bit value is
ORed and input to this bit.

7 Standard Operation Status Summary Bit. A 1 in this bit position indicates that the Standard Operation Status
Group’s summary bit has been set. The Standard Operation Event Register can then be read to determine the specific
condition that caused this bit to be set.

Query: *STB?
Response: The decimal sum of the bits set to 1 including the master summary status bit (MSS) bit 6.
Example: The decimal value 136 is returned when the MSS bit is set low (0).

Decimal sum = 128 (bit 7) + 8 (bit 3)
The decimal value 200 is returned when the MSS bit is set high (1).
Decimal sum = 128 (bit 7) + 8 (bit 3) + 64 (MSS bit)

Service Request Enable Register

The Service Request Enable Register lets you choose which bits in the Status Byte Register trigger a

service

request.

*SRE <dat a> <dat a> is the sum of the decimal values of the bits you want to enable except bit 6. Bit 6
cannot be enabled on this register. Refer to Figure 3-1 on page 97 or Figure 3-2 on page 98.

Example: Enable bits 7 and 5 to trigger a service request when either corresponding status group register
summary bit sets to 1:
send the command * SRE 160 (128 + 32)

Query: * SRE?

Response: The decimal value of the sum of the bits previously enabled with the * SRE <dat a> command.

Chapter 3

105

Programming the Status Register System

Status Groups

Status Groups

The Standard Operation Status Group and the Data Questionable Status Group consist of the
registers listed below. The Standard Event Status Group is similar but does not have negative or
positive transition filters or a condition register.

Condition
Register

Negative
Transition
Filter

Positive
Transition
Filter

Event
Register

Event
Enable
Register

A condition register continuously monitors the hardware and firmware status of
the signal generator. There is no latching or buffering for a condition register; it is
updated in real time.

A negative transition filter specifies the bits in the condition register that will set
corresponding bits in the event register when the condition bit changes from 1 to
0.

A positive transition filter specifies the bits in the condition register that will set
corresponding bits in the event register when the condition bit changes from 0 to
1.

An event register latches transition events from the condition register as specified
by the positive and negative transition filters. Once the bits in the event register
are set, they remain set until cleared by either querying the register contents or
sending the *CLS command.

An enable register specifies the bits in the event register that generate the
summary bit. The signal generator logically ANDs corresponding bits in the event
and enable registers and ORs all the resulting bits to produce a summary bit.
Summary bits are, in turn, used by the Status Byte Register.

A status group is a set of related registers whose contents are programmed to produce status
summary bits. In each status group, corresponding bits in the condition register are filtered by the
negative and positive transition filters and stored in the event register. The contents of the event
register are logically ANDed with the contents of the enable register and the result is logically ORed
to produce a status summary bit in the Status Byte Register.

Standard Event Status Group

The Standard Event Status Group is used to determine the specific event that set bit 5 in the Status

Byte Register. This

group consists of the Standard Event Status Register (an event register) and the

Standard Event Status Enable Register.

106

Chapter 3

Programming the Status Register System
Status Groups

Operation Complete

Request Bus Control

Query Error
Device Dependent Error
Execution Error

Command Error

User Request

Power On
Y Yy VY
3 2 1 0

Event Register 7 6 5 4

Event
Enable Register 7 6 5

vy To Status Byte Register Bit #5 ok72sa
Standard Event Status Register

Table 3-4 Standard Event Status Register Bits

Bit Description

0 Operation Complete. A 1 in this bit position indicates that all pending signal generator operations were completed
following execution of the * CPC command.

1 Request Control. This bit is always set to 0 (the signal generator does not request control).

2 Query Error. A 1 in this bit position indicates that a query error has occurred. Query errors have SCPI error numbers
from —499 to —400.

3 Device Dependent Error. A 1 in this bit position indicates that a device dependent error has occurred. Device
dependent errors have SCPI error numbers from —-399 to —300 and 1 to 32767.

Chapter 3 107

Programming the Status Register System
Status Groups

Table 3-4 Standard Event Status Register Bits

Bit Description

4 Execution Error. A 1 in this bit position indicates that an execution error has occurred. Execution errors have SCPI
error numbers from —299 to —200.

5 Command Error. A 1 in this bit position indicates that a command error has occurred. Command errors have SCPI
error numbers from —199 to —100.

6 User Request Key (Local). A 1 in this bit position indicates that the Local key has been pressed. This is true even if
the signal generator is in local lockout mode.

7 Power On. A 1 in this bit position indicates that the signal generator has been turned off and then on.
Query: *ESR?
Response: The decimal sum of the bits set to 1
Example: The decimal value 136 is returned. The decimal sum = 128 (bit 7) + 8 (bit 3).

Standard Event Status Enable Register

The Standard Event Status Enable Register lets you choose which bits in the Standard Event Status
Register set the summary bit (bit 5 of the Status Byte Register) to 1.

*ESE <dat a> <dat a> is the sum of the decimal values of the bits you want to enable.

Example: Enable bit 7 and bit 6 so that whenever either of those bits is set to 1, the Standard Event
Status summary bit of the Status Byte Register is set to 1:
send the command *ESE 192 (128 + 64)

Query: *ESE?

Response: Decimal value of the sum of the bits previously enabled with the * ESE <dat a> command.

Standard Operation Status Group

NOTE For the E8257D analog signal generator, some of the status bits will return a zero value if
queried. These status bits are not active for the ES8257D. For more information, refer to Table
3-5 on page 109.

The Operation Status Group is used to determine the specific event that set bit 7 in the Status Byte
Register. This group consists of the Standard Operation Condition Register, the Standard Operation
Transition Filters (negative and positive), the Standard Operation Event Register, and the Standard
Operation Event Enable Register.

108 Chapter 3

L

Programming the Status Register System

_®

1/Q CALibrating

Settling
Unused

SWEeping
MEASuring

Waiting for TRIGger
Unused

Unused

Unused

DCFM/DCOM Null in Progress

Baseband is busy
SWEep Calculating

Unused
Unused
Unused

Always Zero (0)
l Y

Positive

Megative

Event

_ Y Y Y Y YYYYYVYYYYY
S Pt (15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0|
Y Y Y Y Y Y YYYYYYYYYY
Standard O
T:::S;;”Fii?"on [15 14 1312 1110 987654821 0]
_ I EEEEEETIEEEEXEXEY’
f'and.?rdc::?ram” [514131211109876543210]
ransion Fiter
_ IEEEEEXIEEETEEX'
Event Pogiiier " [15 14 13 121110 9 8 7 6 5 4 3 2 1 0|
&
&
&
£
G Y
1 g@&w
(& ‘F‘
far&
a&
| B
Standard Operation IT
1514 13 12 1110987654321 0]

Enable Register

Standard Operation Condition Register

The Standard Operation Condition Register continuously monitors the hardware and firmware status
of the signal generator; condition registers are read only.

Table 3-5 Standard Operation Condition Register Bits

I To Status Byte Register Bit #7

Status Groups

Bit Description
0?2 I/Q Calibrating. A 1 in this position indicates an I/Q calibration is in process. (E8267D only)
1 Settling. A 1 in this bit position indicates that the signal generator is settling.

Chapter 3

109

Programming the Status Register System

Status Groups

Table 3-5 Standard Operation Condition Register Bits

Bit Description
2 Unused. This bit position is set to 0.
3 Sweeping. A 1 in this bit position indicates that a sweep is in progress.
4 Measuring. Al in this bit position indicates that a bit error rate test is in progress
5 Waiting for Trigger. A 1 in this bit position indicates that the source is in a “wait for trigger” state. When
option 300 is enabled, a 1 in this bit position indicates that TCH/PDCH synchronization is established and
waiting for a trigger to start measurements.
6,7,8 Unused. These bits are always set to 0.
9 DCFM/DC@M Null in Progress. A 1 in this bit position indicates that the signal generator is currently
performing a DCFM/DC®M zero calibration.
10a Baseband is Busy. A 1 in this bit position indicates that the baseband generator is communicating or
processing. This is a summary bit. See the “Baseband Operation Status Group” on page 112 for more
information.
11 Sweep Calculating. A 1 in this bit position indicates that the signal generator is currently doing the necessary
pre-sweep calculations.
12, 13, 14 Unused. These bits are always set to 0.
15 Always 0.

a.0n the E8257D, this bit is set to 0.

Query:

Response:

Example:

STATus: CPERat i on: CONDi ti on?
The decimal sum of the bits that are set to 1

The decimal value 520 is returned. The decimal sum = 512 (bit 9) + 8 (bit 3).

Standard Operation Transition Filters (negative and positive)

The Standard Operation Transition Filters specify which types of bit state changes in the condition
register set corresponding bits in the event register. Changes can be positive (0 to 1) or negative (1

to 0).
Commands: STATus: CPERat i on: NTRansi ti on <val ue> (negative transition), or STATus: CPERat i on: PTRansi ti on
<val ue> (positive transition), where
<val ue> is the sum of the decimal values of the bits you want to enable.
Queries: STATus: OPERat i on: NTRansi ti on?
STATus: OPERat i on: PTRansi ti on?
110 Chapter 3

Programming the Status Register System
Status Groups

Standard Operation Event Register

The Standard Operation Event Register latches transition events from the condition register as
specified by the transition filters. Event registers are destructive read only: reading data from an
event register clears the content of that register.

Query: STATus: OPERati on[: EVENt] ?

Standard Operation Event Enable Register
The Standard Operation Event Enable Register lets you choose which bits in the Standard Operation
Event Register set the summary bit (bit 7 of the Status Byte Register) to 1

Command: STATus: CPERat i on: ENABl e <val ue>, where
<val ue> is the sum of the decimal values of the bits you want to enable.

Example: Enable bit 9 and bit 3 so that whenever either of those bits is set to 1, the Standard Operation Status
summary bit of the Status Byte Register is set to 1:
send the command STAT: OPER: ENAB 520 (512 + 8)

Query: STATus: CPERat i on: ENAB| e?

Response: Decimal value of the sum of the bits previously enabled with the STATus: OPERat i on: ENABI e
<val ue> command.

Chapter 3 111

Programming the Status Register System
Status Groups

Baseband Operation Status Group

NOTE For the E8257D analog signal generator, the status bits will return a zero value if queried.
This status group is not active for the E8257D.

The Baseband Operation Status Group is used to determine the specific event that set bit 10 in the
Standard Operation Status Group. This group consists of the Baseband Operation Condition Register,
the Baseband Operation Transition Filters (negative and positive), the Baseband Operation Event
Register, and the Baseband Operation Event Enable Register.

Baseband 1 Busy
Baseband 1 Communicating
Unused
Unused
Unused
Unused
Unused
Unused
Unused
Unused
Unused
Unused
Unused
Unused
Unused

Always Zero (0)
__l Yy yvy

-l
-

9

-

Y 9
B ration| 15 1: f- 12 1+1 1: z i I f i i i i l f‘
E&:%ﬁi?:::::"“"-”"|15 1413 12 1110987 654 32 1 0|
IREEEEREEEEEEEEEEY
§Z§§?§2ds:era"°"|15 1413 12 1110987 654 321 0]
ransition riter
Y VY VY VY Y Y YYYYYYVYYVY
Eﬁgﬁfgggiftgffa“"hs 1413 12 1110 987 654 321 0]
D ¥ %
&)
&
5 (& Y
+ D Y ¥,
&) X Y
y mlley
Baseband Operation | T
Event 1514 18 12 1110987 654 3 2 1 0
Enable Register
Y To Operation Status Register Bit #10 ck7126

112 Chapter 3

Programming the Status Register System
Status Groups

Baseband Operation Condition Register

The Baseband Operation Condition Register continuously monitors the hardware and firmware status
of the signal generator. Condition registers are read only.

Table 3-6 Baseband Operation Condition Register Bits

Bit Description
0 Baseband 1 Busy. A 1 in this position indicates the signal generator baseband is active.
1 Baseband 1 Communicating. A 1 in this bit position indicates that the signal generator baseband generator is

handling data 1/0.

2-14 Unused. These bits are always set to 0.

15 Always 0.

Query: STATus: OPERat i on: BASeband: GONDI ti on?
Response: The decimal sum of the bits set to 1

Example: The decimal value 2 is returned. The decimal sum = 2 (bit 1).

Baseband Operation Transition Filters (negative and positive)

The Baseband Operation Transition Filters specify which types of bit state changes in the condition
register set corresponding bits in the event register. Changes can be positive (0 to 1) or negative (1
to 0).

Commands: STATus: CPERat i on: BASeband: NTRansi ti on <val ue> (negative transition), or
STATus: OPERat i on: BASeband: PTRansi ti on <val ue> (positive transition), where

<val ue> is the sum of the decimal values of the bits you want to enable.

Queries: STATus: OPERat i on: BASeband: NTRansi t i on?
STATus: OPERat i on: BASeband: PTRansi ti on?

Baseband Operation Event Register

The Baseband Operation Event Register latches transition events from the condition register as
specified by the transition filters. Event registers are destructive read only: reading data from an
event register clears the contents of that register.

Query: STATus: OPERat i on: BASeband[: EVENt] ?

Chapter 3 113

Programming the Status Register System
Status Groups

Baseband Operation Event Enable Register
The Baseband Operation Event Enable Register lets you choose which bits in the Baseband Operation
Event Register can set the summary bit (bit 10 of the Standard Operation Status Group).

Command: STATus: CPERat i on: BASeband: ENAB| e <val ue>, where
<val ue> is the sum of the decimal values of the bits you want to enable.

Example: Enable bit 0 and bit 1 so that whenever either of those bits are set to 1, the Baseband Operation
Status summary bit of the Standard Operation Status Register is set to 1: send the command
STAT: OPER: BAS: ENAB 520 (512 + 8)

Query: STATus: CPERat i on: BASeband: ENABI e?

Response: Decimal value of the sum of the bits previously enabled with the
STATus: OPERat i on: BASeband: ENABI e <val ue> command.

114 Chapter 3

Programming the Status Register System
Status Groups

Data Questionable Status Group

NOTE For the E8257D analog signal generator, some of the status bits will return a zero value if
queried. These status bits are not active for the E8257D. For more information, refer to Table
3-7 on page 116

The Data Questionable Status Group is used to determine the specific event that set bit 3 in the
Status Byte Register. This group consists of the Data Questionable Condition Register, the Data
Questionable Transition Filters (negative and positive), the Data Questionable Event Register, and the
Data Questionable Event Enable Register.

Unused
Unused
Unused
POWer (summary)
TEMPerature (OVEN COLD)
FREQuency (summary)
Unused
MODulation (summary)
CALibration (summary)
SELFtest
Unused
Unused
Unused
Unused
Unused
Always Zero (0)

_ Y Yy Yy Y ¥
DaIaOUESt|0nable| 15 14 13 12 11 10

Condition Register
Data QUEStionable + + + + +
Posilive [15 14 13 12 11 10

Transition Filter
' 'R'R’
15

Data QUEStionable
Megative | 14 13 12
Transition Filter + + ‘

-
%
-
&
-
-
-

i

d

-]
5}

Data QUEStionable
Event Register |15 14 13 12 1

o—]
© | © |4 © (4] o |
0l O g ® || ©
~ e] N~
@D (- D O D
U e U1 [(7 [O
[FN P Ny U (N VI N
Wl W W] W
ro fe— o (= FO — ro
el o el e e i el
O - OO O

jy
-
=]

]
&
&

&

@

Y
)
(&

y
DY

o)

Data QUEStionable

Event
Enable Register |‘|5 14 13 12 11 10 9 87 6 5 4 3

vl e o)

el e)

(=]

¥ To Status Byte Register Bit #3

Chapter 3 115

Programming the Status Register System
Status Groups

Data Questionable Condition Register

The Data Questionable Condition Register continuously monitors the hardware and firmware status of
the signal generator; condition registers are read only.

Table 3-7 Data Questionable Condition Register Bits

Bit Description
0,1, 2 Unused. These bits are always set to 0.
3 Power (summary). This is a summary bit taken from the QUEStionable:POWer register. A 1 in this bit position

indicates that one of the following may have happened: the ALC (Automatic Leveling Control) is unable to
maintain a leveled RF output power (i.e., ALC is UNLEVELED), the reverse power protection circuit has been
tripped. See the “Data Questionable Power Status Group” on page 118 for more information.

4 Temperature (OVEN COLD). A 1 in this bit position indicates that the internal reference oscillator (reference
oven) is cold.

5 Frequency (summary). This is a summary bit taken from the QUEStionable:FREQuency register. A 1 in this bit
position indicates that one of the following may have happened: synthesizer PLL unlocked, 10 MHz reference
VCO PLL unlocked, 1 GHz reference unlocked, sampler, YO loop unlocked or baseband 1 unlocked. For more
information, see the “Data Questionable Frequency Status Group” on page 121.

6 Unused. This bit is always set to 0.

7 Modulation (summary). This is a summary bit taken from the QUEStionable:MODulation register. A 1 in this
bit position indicates that one of the following may have happened: modulation source 1 underrange,
modulation source 1 overrange, modulation source 2 underrange, modulation source 2 overrange, modulation
uncalibrated. See the “Data Questionable Modulation Status Group” on page 124 for more information.

82 Calibration (summary). This is a summary bit taken from the QUEStionable:CALibration register. A 1 in this
bit position indicates that one of the following may have happened: an error has occurred in the DCFM/DC®M
zero calibration, an error has occurred in the I/Q calibration. See the “Data Questionable Calibration Status
Group” on page 127 for more information.

9 Self Test. A 1 in this bit position indicates that a self-test has failed during power-up. This bit can only be
cleared by cycling the signal generator’s line power. *CLS will not clear this bit.

10-14 Unused. These bits are always set to 0.

15 Always 0.

a.0n the E8257D, this bit is set to 0.

Query: STATus: QUESt i onabl e: CONDi ti on?
Response: The decimal sum of the bits that are set to 1
Example: The decimal value 520 is returned. The decimal sum = 512 (bit 9) + 8 (bit 3).

Data Questionable Transition Filters (negative and positive)

The Data Questionable Transition Filters specify which type of bit state changes in the condition
register set corresponding bits in the event register. Changes can be positive (0 to 1) or negative (1
to 0).

116 Chapter 3

Commands:

Queries:

Programming the Status Register System
Status Groups

STATus: QUESt i onabl e: NTRansi ti on <val ue> (negative transition), or
STATus: QUESti onabl e: PTRansi ti on <val ue> (positive transition), where

<val ue> is the sum of the decimal values of the bits you want to enable.

STATus: QUESt i onabl e: NTRansi ti on?
STATus: QUESt i onabl e: PTRansi ti on?

Data Questionable Event Register

The Data Questionable Event Register latches transition events from the condition register as
specified by the transition filters. Event registers are destructive read-only: reading data from an
event register clears the contents of that register.

Query:

STATus: QUESt i onabl e[: EVENt] ?

Data Questionable Event Enable Register

The Data Questionable Event Enable Register lets you choose which bits in the Data Questionable
Event Register set the summary bit (bit 3 of the Status Byte Register) to 1.

Command:

Example:

Query:

Response:

STATus: QUESt i onabl e: ENABl e <val ue> command where <val ue> is the sum of the decimal values of
the bits you want to enable.

Enable bit 9 and bit 3 so that whenever either of those bits is set to 1, the Data Questionable Status
summary bit of the Status Byte Register is set to 1:

send the command STAT: QUES: ENAB 520 (512 + 8)

STATus: QUESt i onabl e: ENAB| e?

Decimal value of the sum of the bits previously enabled with the STATus: QUESt i onabl e: ENAB| e
<val ue> command.

Chapter 3

117

Programming the Status Register System

Status Groups

Data Questionable Power Status Group

The Data Questionable Power Status Group is used to determine the specific event that set bit 3 in

the Data Questionable Condition Register. This group consists of the Data Questionable Power

Condition Register, the Data Questionable Power Transition Filters (negative and positive), the Data

Questionable Power

Event Register, and the Data Questionable Power Event Enable Register.

&

Reverse Power Protection Tripped

Unleveled

Unused

Unused
Unused

Unused
Unused

Unused

Unused

Unused

Unused
Unused

Unused

Unused
Unused

POWer
Condition Register

Data QUEStianable
POWer

Positive

Transition Filter
Data QUEStionable
POWer

Negative

Transition Filter
Data QUEStionakle
POWer

Event Register

Always Zero (0) _l
Data QUEStionable Y Vv

|1514131'r21::;g‘a¥‘;‘5r:‘e: ‘1”(;|
I EEEEEEEEIEEEEEER
[15 14 13 12 11 10 98 7 6 54 3 2 1 0|
Y VY Y VY YYVYYVYYVYYYYY
[1514 13 12 1110 98 7 654 3 2 1 0|

YV VY VY YVYYYVYVYVYYY
151413 121110987 654321 0|

&
&

Data QUEStianable
POWer

Event

Enable Register

15 14 13 12 11 10 9 8 7 6 5 4 3

e
)
o el
O
o et
Oy
)
D
10— 1o [o [o e o [
- oo
D

(=]

Y To Data Questionable Status Register Bit #3

ck7D4c

118

Chapter 3

Programming the Status Register System
Status Groups

Data Questionable Power Condition Register

The Data Questionable Power Condition Register continuously monitors the hardware and firmware
status of the signal generator; condition registers are read only.

Table 3-8 Data Questionable Power Condition Register Bits

Bit Description

0 Reverse Power Protection Tripped. A 1 in this bit position indicates that the reverse power protection (RPP) circuit
has been tripped. There is no output in this state. Any conditions that may have caused the problem should be
corrected. The RPP circuit can be reset and bit 0 set to 0, by sending the remote SCPI command:
OUTput:PROTection:CLEar.

1 Unleveled. A 1 in this bit indicates that the output leveling loop is unable to set the output power.

2-14 Unused. These bits are always set to 0.

15 Always 0.

Query: STATus: QUESt i onabl e: POAér: CONDI ti on?

Response: The decimal sum of the bits set to 1

Data Questionable Power Transition Filters (negative and positive)

The Data Questionable Power Transition Filters specify which type of bit state changes in the
condition register set corresponding bits in the event register. Changes can be positive (0 to 1) or
negative (1 to 0).

Commands: STATus: QUESt i onabl e: POMr : NTRansi ti on <val ue> (negative transition), or
STATus: QUESt i onabl e: POAer : PTRansi ti on <val ue> (positive transition), where

<val ue> is the sum of the decimal values of the bits you want to enable.

Queries: STATus: QUESti onabl e: POMr : NTRansi ti on? STATus: QUESt i onabl e: POMr : PTRansi ti on?

Data Questionable Power Event Register

The Data Questionable Power Event Register latches transition events from the condition register as
specified by the transition filters. Event registers are destructive read-only: reading data from an
event register clears the contents of that register.

Query: STATus: QUESt i onabl e: POMNér[: EVENL] ?

Chapter 3 119

Programming the Status Register System
Status Groups

Data Questionable Power Event Enable Register

The Data Questionable Power Event Enable Register lets you choose which bits in the Data
Questionable Power Event Register set the summary bit (bit 3 of the Data Questionable Condition
Register) to 1.

Command: STATus: QUESt i onabl e: POAer : ENABl e <val ue> command where <val ue> is the sum of the decimal
values of the bits you want to enable

Example: Enable bit 9 and bit 3 so that whenever either of those bits is set to 1, the Data Questionable Power
summary bit of the Data Questionable Condition Register is set to 1: send the command
STAT: QUES: PON ENAB 520 (512 + 8)

Query: STATus: QUESt i onabl e: PONér : ENABI e?

Response: Decimal value of the sum of the bits previously enabled with the
STATus: QUESt i onabl e: POAér : ENABI e <val ue> command.

120 Chapter 3

Programming the Status Register System
Status Groups

Data Questionable Frequency Status Group

NOTE For the E8257D analog signal generator, some of the status bits will return a zero value if
queried. These status bits are not active for the E8257D. For more information, refer to Table
3-9 on page 122.

The Data Questionable Frequency Status Group is used to determine the specific event that set bit 5
in the Data Questionable Condition Register. This group consists of the Data Questionable Frequency
Condition Register, the Data Questionable Frequency Transition Filters (negative and positive), the
Data Questionable Frequency Event Register, and the Data Questionable Frequency Event Enable
Register.

Synthesizer Unlocked
10 MHz Reference Unlocked
1 GHz Reference Unlocked
Baseband 1 Unlocked
Unused
Sampler Loop Unlocked
YO Loop Unlocked
Unused
Unused
Unused
Unused
Unused
Unused
Unused
Unused ——m787 —
Always Zero (0)

Data OUEsuonable_l Yy vyvey
FREQUeNCY iser |18 14 18 12 11 10

Data QUEStionable + + +

FAEQuency [15 14 18 12 11 10

Transition Filter

Data QUEStionable ‘ * e
;F‘EC:_UQ”CY 15 14 13 12 11 10
egative
Transition Filter * + +

Pauengy "% [15 14 13 12 11 10

y
1
v
1
1
v
1
Event Register
&
&
&
&
& Y
&
@ @
4 y
&
T
1

Y

-
d
-
i
i

|
|

[t
et
[

(et —|

(et —{

—
© [© 4] O 4] ©
0 g O g O g 0
~] N~]
o (- O e O (A o [
1 g U1l O [0
N R R R S
Sl S AN L o AN o WA
[SR R WV

o et

e}t
e el

Data QUEStionable

FREGuency

Event 15 14 13 12 11 10 9 8 7 6 5 4 3
Enable Register

Y To Data Questionable Status Register Bit #5 k7064

"y (e

o

Chapter 3 121

Programming the Status Register System
Status Groups

Data Questionable Frequency Condition Register

The Data Questionable Frequency Condition Register continuously monitors the hardware and
firmware status of the signal generator; condition registers are read-only.

Table 3-9 Data Questionable Frequency Condition Register Bits

Bit Description
0 Synth. Unlocked. A 1 in this bit indicates that the synthesizer is unlocked.
1 10 MHz Ref Unlocked. A 1 in this bit indicates that the 10 MHz reference signal is unlocked.
2 1 Ghz Ref Unlocked. A 1 in this bit indicates that the 1 Ghz reference signal is unlocked.
32 Baseband 1 Unlocked. A 1 in this bit indicates that the baseband 1 generator is unlocked.
4 Unused. This bit is always set to 0.
5 Sampler Loop Unlocked. A 1 in this bit indicates that the sampler loop is unlocked.
6 YO Loop Unlocked. A 1 in this bit indicates that the YO loop is unlocked.
7-14 Unused. These bits are always set to 0.
15 Always 0.

a.0n the E8257D, this bit is set to 0.

Query: STATus: QUESt i onabl e: FREQuency: CONDi ti on?

Response: The decimal sum of the bits set to 1

Data Questionable Frequency Transition Filters (negative and positive)
Specifies which types of bit state changes in the condition register set corresponding bits in the event
register. Changes can be positive (0 to 1) or negative (1 to 0).

Commands: STATus: QUESt i onabl e: FREQuency: NTRansi ti on <val ue> (negative transition) or

STATus: QUESt i onabl e: FREQuency: PTRansi ti on <val ue> (positive transition) where <val ue> is the
sum of the decimal values of the bits you want to enable.

Queries: STATus: QUESt i onabl e: FREQuency: NTRansi t i on?
STATus: QUESt i onabl e: FREQuency: PTRansi ti on?

Data Questionable Frequency Event Register

Latches transition events from the condition register as specified by the transition filters. Event
registers are destructive read-only: reading data from an event register clears the content of that
register.

Query: STATus: QUESt i onabl e: FREQuency[: EVENt] ?

122 Chapter 3

Programming the Status Register System
Status Groups

Data Questionable Frequency Event Enable Register
Lets you choose which bits in the Data Questionable Frequency Event Register set the summary bit
(bit 5 of the Data Questionable Condition Register) to 1.

Command: STATus: QUESt i onabl e: FREQuency: ENABl e <val ue>, where <val ue> is the sum of the decimal values
of the bits you want to enable.

Example: Enable bit 9 and bit 3 so that whenever either of those bits is set to 1, the Data Questionable
Frequency summary bit of the Data Questionable Condition Register is set to 1: send the command
STAT: QUES: FREQ ENAB 520 (512 + 8)

Query: STATus: QUESt i onabl e: FREQuency: ENAB| e?

Response: Decimal value of the sum of the bits previously enabled with the
STATus: QUESt i onabl e: FREQuency: ENABI e <val ue> command.

Chapter 3 123

Programming the Status Register System

Status Groups

Data Questionable Modulation Status Group

The Data Questionable Modulation Status Group is used to determine the specific event that set bit 7
in the Data Questionable Condition Register. This group consists of the Data Questionable Modulation
Condition Register, the Data Questionable Modulation Transition Filters (negative and positive), the
Data Questionable Modulation Event Register, and the Data Questionable Modulation Event Enable

Register.
Modulation 1 Undermod
Modulation 1 Overmod
Modulation 2 Undermod
Modulation 2 Overmod
Modulation Uncalibrated
Unused
Unused
Unused
Unused
Unused
Unused
Unused
Unused
Unused
Unused ———m
Always Zero (0)
EﬂactJaDOUESHDnable l Y Y Y ¥ YYYYYYYYTYYY
ulation
MODiation er |15 14 13 12 1110 987 654 3 2 1 0
azauesionase § § § § § ¥ Y IV 4 ¥ 4 4 ¥ ¥
ulation
Positive [15 14 13 12 11 10 987 6 54 3 2 1 0 |
Transition Filter
DataGUEStionacle ¥ ¥ ¥ ¥ ¥ Y Y YY VY YV VVY
Nggi;gi'\féw” |151413 12 1 1098?6543210|
Transition Filter ++*+*+*+*++++**+
Data QUEStionabl
MODUlation 15 14 13 12 1110 98 7 6 5 4 3 2 1 0 |
Event Register
& %
&
L=
(&
&
£ &
-3
& C: Y
O b S
5
Data QUEStionable | T
MO Dulation
Event) 15141312111098?6543210'
Enable Register
¥ To Data Questionable Status Register Bit #7 ck708c
124 Chapter 3

Programming the Status Register System
Status Groups

Data Questionable Modulation Condition Register

The Data Questionable Modulation Condition Register continuously monitors the hardware and
firmware status of the signal generator. Condition registers are read-only.

Table 3-10 Data Questionable Modulation Condition Register Bits

Bit Description

0 Modulation 1 Undermod. A 1 in this bit indicates that the External 1 input, ac coupling on, is less than 0.97 volts.
1 Modulation 1 Overmod. A 1 in this bit indicates that the External 1 input, ac coupling on, is greater than 1.03 volts.
2 Modulation 2 Undermod. A 1 in this bit indicates that the External 2 input, ac coupling on, is less than 0.97 volts.
3 Modulation 2 Overmod. A 1 in this bit indicates that the External 2 input, ac coupling on, is greater than 1.03 volts.
4 Modulation Uncalibrated. A 1 in this bit indicates that modulation is uncalibrated.

5-14 Unused. These bits are always set to 0.

15 Always 0.

Query: STATus: QUESt i onabl e: MCDul at i on: CONDI ti on?

Response: The decimal sum of the bits that are set to 1

Data Questionable Modulation Transition Filters (negative and positive)

The Data Questionable Modulation Transition Filters specify which type of bit state changes in the
condition register set corresponding bits in the event register. Changes can be positive (0 to 1) or
negative (1 to 0).

Commands: STATus: QUESti onabl e: MODul at i on: NTRansi ti on <val ue> (negative transition), or

STATus: QUESt i onabl e: MDul at i on: PTRansi tion <val ue> (positive transition), where <val ue> is
the sum of the decimal values of the bits you want to enable.

Queries: STATus: QUESt i onabl e: MoDul at i on: NTRansi t i on?
STATus: QUESt i onabl e: MDul at i on: PTRansi ti on?

Data Questionable Modulation Event Register

The Data Questionable Modulation Event Register latches transition events from the condition register
as specified by the transition filters. Event registers are destructive read-only: reading data from an
event register clears the contents of that register.

Query: STATus: QUESt i onabl e: MCDul ation[: EVEN] ?

Chapter 3 125

Programming the Status Register System
Status Groups

Data Questionable Modulation Event Enable Register

The Data Questionable Modulation Event Enable Register lets you choose which bits in the Data
Questionable Modulation Event Register set the summary bit (bit 7 of the Data Questionable
Condition Register) to 1.

Command: STATus: QUES i onabl e: MODul at i on: ENABI e <val ue> command where <val ue> is the sum of the
decimal values of the bits you want to enable.

Example: Enable bit 9 and bit 3 so that whenever either of those bits is set to 1, the Data Questionable
Modulation summary bit of the Data Questionable Condition Register is set to 1: send the command
STAT: QUES: MOD: ENAB 520 (512 + 8)

Query: STATus: QUESt i onabl e: MDul at i on: ENAB| e?

Response: Decimal value of the sum of the bits previously enabled with the
STATus: QUESt i onabl e: MODul at i on: ENABI e <val ue> command.

126 Chapter 3

Programming the Status Register System
Status Groups

Data Questionable Calibration Status Group

NOTE For the E8257D analog signal generator, some of the status bits will return a zero value if
queried. These status bits are not active for the E8257D. For more information, refer to Table
3-11 on page 128.

The Data Questionable Calibration Status Group is used to determine the specific event that set bit 8
in the Data Questionable Condition Register. This group consists of the Data Questionable Calibration
Condition Register, the Data Questionable Calibration Transition Filters (negative and positive), the
Data Questionable Calibration Event Register, and the Data Questionable Calibration Event Enable
Register.

DCFM/DCM Zero Failure
1/Q Calibration Failure
Unused
Unused
Unused
Unused
Unused
Unused
Unused
Unused
Unused
Unused
Unused
Unused
Unused —m8M ———
Always Zero (0)
DatqouEStionable—l Y VYy
gér%hbitriac}#ogegister | 15 14 13 12
SaouEsenate ¥ _¥
Positive |15 14 13 12
Transition Filter

Data QUEStionable + + +

<
<
<
<
<
d

—_
- [*

e —

a—
a—
o (4 o |«

-
e

Gy VR N
L

l—

lt—
© [© |4 © |4 © [«
@ |- O f— O (g O |
R = IR S RN 2 N
O |4 O [4 O @ o [&
Ol [O [O (€ O [
g T N I (N P N
(AW 5 AN D AR T
N [N D D

CALibration [15 14 18 12 11 10 0]
egative

Transition Filter + + + ++

Data QUEStionable

ChLibration [15 14 13 12 11 10 10|

Event Register

&
&
&
&
&
&
&
& DY
Y
&
(& r‘; b 4
(&
G y
r wlley

Data QUEStionable | 4

CALibration

Event . 1514131211109876543210|

Enable Register
Y To Data Questionable Status Register Bit #8 ck720a

Chapter 3 127

Programming the Status Register System
Status Groups

Data Questionable Calibration Condition Register

The Data Questionable Calibration Condition Register continuously monitors the calibration status of
the signal generator; condition registers are read only.

Table 3-11 Data Questionable Calibration Condition Register Bits

Bit Description
0 DCFM/DC®M Zero Failure. A 1 in this bit indicates that the DCFM/DC®M zero calibration routine has failed. This
is a critical error. The output of the source is not valid until the condition of this bit is 0.
12 I/Q Calibration Failure. A 1 in this bit indicates that the I/Q modulation calibration experienced a failure.
2-14 Unused. These bits are always set to 0.
15 Always 0.

a.0n the E8257D, this bit is set to 0.

Query: STATus: QUESt i onabl e: CALi brati on: COND ti on?

Response: The decimal sum of the bits set to 1

Data Questionable Calibration Transition Filters (negative and positive)

The Data Questionable Calibration Transition Filters specify which type of bit state changes in the
condition register set corresponding bits in the event register. Changes can be positive (0 to 1) or
negative (1 to 0).

Commands: STATus: QUESti onabl e: CALi brati on: NTRansi ti on <val ue> (negative transition), or

STATus: QUESti onabl e: CALi brati on: PTRansi ti on <val ue> (positive transition), where <val ue> is
the sum of the decimal values of the bits you want to enable.

Queries: STATus: QUESti onabl e: CALi br ati on: NTRansi ti on?

STATus: QUESti onabl e: CALi br ati on: PTRansi ti on?

Data Questionable Calibration Event Register

The Data Questionable Calibration Event Register latches transition events from the condition register
as specified by the transition filters. Event registers are destructive read-only. Reading data from an
event register clears the content of that register.

Query: STATus: QUESt i onabl e: CALi brati on[: EVENt] ?

128

Chapter 3

Programming the Status Register System
Status Groups

Data Questionable Calibration Event Enable Register

The Data Questionable Calibration Event Enable Register lets you choose which bits in the Data
Questionable Calibration Event Register set the summary bit (bit 8 of the Data Questionable
Condition register) to 1.

Command: STATus: QUESt i onabl e: CALi brati on: ENABl e <val ue>, where <val ue> is the sum of the decimal
values of the bits you want to enable.

Example: Enable bit 9 and bit 3 so that whenever either of those bits is set to 1, the Data Questionable
Calibration summary bit of the Data Questionable Condition Register is set to 1: send the command
STAT: QUES: CAL: ENAB 520 (512 + 8)

Query: STATus: QUESt i onabl e: CALi br at i on: ENAB e?

Response: Decimal value of the sum of the bits previously enabled with the
STATus: QUESt i onabl e: CALi br ati on: ENABI e <val ue> command.

Chapter 3 129

Programming the Status Register System
Status Groups

130 Chapter 3

4 Creating and Downloading Waveform Files

This chapter explains how to create Arb-based waveform data and download it into the signal
generator:

e “Overview” on page 131

* “Understanding Waveform Data” on page 132

¢ “Waveform Structure” on page 139

* “Waveform Phase Continuity” on page 142

¢ “Waveform Memory” on page 144

e “Commands for Downloading and Extracting Waveform Data” on page 146
¢ “Creating Waveform Data” on page 152

¢ “Downloading Waveform Data” on page 157

¢ “Loading, Playing, and Verifying a Downloaded Waveform” on page 164
e “Using the Download Utilities” on page 166

¢ “Downloading E443xB Signal Generator Files” on page 166

¢ “Programming Examples” on page 169

¢ “Troubleshooting Waveform Files” on page 214

Overview

NOTE Creating and downloading waveform data is available only in E8267D PSG Vector Signal
Generators with Option 601 or 602.

The signal generator lets you download and extract waveform files. You can create these files either
external to the signal generator or by using one of the internal modulation formats. The signal
generator also accepts waveforms files created for the earlier E443xB ESG signal generator models.
For file extractions, the signal generator encrypts the waveform file information. The exception to
encrypted file extraction is user-created I/Q data. The signal generator lets you extract this type of
file unencrypted. After extracting a waveform file, you can download it into another Agilent signal
generator that has the same option or software license required to play it. Waveform files consist of
three items:

¢ [/Q data
¢ Marker data
¢ File header

Chapter 4 131

Creating and Downloading Waveform Files
Understanding Waveform Data

The signal generator automatically creates the marker file and the file header if the two items are not
part of the download. In this situation, the signal generator sets the file header information to
unspecified (no settings saved) and sets all markers to zero (off).

There are two ways to download waveform files, programmatically or using one of three available free
download utilities created by Agilent Technologies:

¢ Intuilink for PSG/ESG Signal Generators
www.agilent.com/find/intuilink

* PSG/ESG Download Assistant for use only with MATLAB®
www.agilent. com/find/downloadassz’stomt1

e NT7622A Signal Studio Toolkit
www.agilent.com/find/signalstudio

Waveform Data Requirements

To be successful in downloading files, you must first create the data in the required format.
¢ Signed 2’s complement

e 2-byte integer values

¢ Input data range of —32768 to 32767

¢ Minimum of 60 samples per waveform (60 I and 60 Q data points)

¢ Interleaved I and Q data

¢ Big endian byte order

¢ The same name for the marker and I/Q file

This is only a requirement if you create and download a marker file, otherwise the signal
generator automatically creates the marker file using the I/Q data file name. For more
information, see “Waveform Structure” on page 139.

For more information on waveform data, see “Understanding Waveform Data” on page 132.

Understanding Waveform Data

The signal generator accepts binary data formatted into a binary I/Q file. This section explains the
necessary components of the binary data, which uses ones and zeros to represent a value.

Bits and Bytes

Binary data uses the base-two number system. The location of each bit within the data represents a
value that uses base two raised to a power (2“’1). The exponent is n — 1 because the first position is
zero. The first bit position, zero, is located at the far right. To find the decimal value of the binary
data, sum the value of each location:

1. MATLAB is a U.S. registered trademark of The Math Works, Inc.

132 Chapter 4

Creating and Downloading Waveform Files
Understanding Waveform Data

1101 = (1 x2%) + (1 x2%) + (0 x 21) + (1 x 20)
A x8+ (A x4)+((0x2)+(1x1)
13 (decimal value)

Notice that the exponent identifies the bit position within the data, and we read the data from right
to left.

The signal generator accepts data in the form of bytes. Bytes are groups of eight bits:

01101110 = (0 x27) + (1 x2%) + (1 x 25%) + (0 x 2% +(1 x23) + (1 x22) + (1 x 21) + (0 x 29
= 110 (decimal value)

The maximum value for a single unsigned byte is 255 (11111111 or 28—1), but you can use multiple
bytes to represent larger values. The following shows two bytes and the resulting integer value:

01101110 10110011= 28339 (decimal value)

The maximum value for two unsigned bytes is 65535. Since binary strings lengthen as the value
increases, it is common to show binary values using hexadecimal (hex) values (base 16), which are
shorter. The value 65535 in hex is FFFF. Hexadecimal consists of the values O, 1, 2, 3, 4, 5, 6, 7, 8,
9, A B, C, D, E, and F. In decimal, hex values range from 0 to 15 (F). It takes 4 bits to represent a
single hex value.

1 = 0001 2 = 0010 3 = 0011 4 = 0100 5 = 0101
6 = 0110 7 = 0111 8 = 1000 9 = 1001 A = 1010
B = 1011 C = 1100 D = 1101 E = 1110 F = 1111

For I and Q data, the signal generator uses two bytes to represent an integer value.

LSB and MSB (Bit Order)

Within groups (strings) of bits, we designate the order of the bits by identifying which bit has the
highest value and which has the lowest value by its location in the bit string. The following is an
example of this order.

Most Significant Bit (MSB) This bit has the highest value (greatest weight) and is located at the far left of the bit
string.

Least Significant Bit (LSB) This bit has the lowest value (bit position zero) and is located at the far right of the
bit string.

Bit Position 15 14 1312 1110 9 8 7 65 4 321 0
Data 1 01 101 11 11101001

\

MSB LSB

Because we are using 2-bytes of data, the MSB appears in the second byte.

Chapter 4 133

Creating and Downloading Waveform Files
Understanding Waveform Data

Little Endian and Big Endian (Byte Order)

When you use multiple bytes (as required for the waveform data), you must identify their order. This
is similar to identifying the order of bits by LSB and MSB. To identify byte order, use the terms little
endian and big endian. These terms are used by designers of computer processors.
Little Endian Order
The lowest order byte that contains bits 0—7 comes first.

Bit Position 7 65 43 21 0 15 14 1312 1110 9 8
Data 1 1 1 01001 101101 11 Hex values = E9 B7

Big Endian Order

The highest order byte that contains bits 8—15 comes first.

Bit Position 15 14 1312 11 10 9 8 7 65 4 321 0
Data 101101 11 11101001 Hex values = B7 E9

/ b

MSB LSB

Notice in the previous figure that the LSB and MSB positioning changes with the byte order. In little
endian order, the LSB and MSB are next to each other in the bit sequence.

NOTE For 1/Q data downloads, the signal generator requires big endian order. For each I/Q data
point, the signal generator uses four bytes (two integer values), two bytes for the I point and
two bytes for the Q point.

The byte order, little endian or big endian, depends on the type of processor used with your

development platform. Intel©! processors and its clones use little endian. Sun™ and Motorola
processors use big endian. The Apple PowerPC processor, while big endian oriented, also supports the
little endian order. Always refer to the processor’s manufacturer to determine the order they use for
bytes, and if they support both, how to ensure that you are using the correct byte order.

Development platforms include any product that creates and saves waveform data to a file. This
includes Agilent Technologies Advanced Design System EDA software, C++, MATLAB, and so forth.

The byte order describes how the system processor stores integer values as binary data in memory.

1. Intel is a U.S. registered trademark of Intel Corporation.

Sun is a trademark or registered trademark of Sun Microsystems, Inc. in the U.S. and other countries.

134 Chapter 4

Creating and Downloading Waveform Files
Understanding Waveform Data

If you output data from a little endian system to a text file (ASCII text), the values are the same as
viewed from a big endian system. The order only becomes important when you use the data in binary
format, as is done when downloading data to the signal generator.

Byte Swapping

While the processor for the development platform determines the byte order, the recipient of the data
may require the bytes in the reverse order. In this situation, you must reverse the byte order before
downloading the data. This is commonly referred to as byte swapping. You can swap bytes either
programmatically or by using the Agilent Technologies IntuiLink for PSG/ESG Signal Generators
software. For the signal generator, byte swapping is the method to change the byte order of little
endian to big endian. For more information on little endian and big endian order, see “Little Endian
and Big Endian (Byte Order)” on page 134.

The following figure shows the concept of byte swapping for the signal generator. Remember that we
can represent data in hex format (4 bits per hex value), so each byte (8 bits) in the figure shows two
example hex values.

o 1 2 3
Little Endian ‘ E9| B7| 53 “ 2A‘ 16-bit integer values (2 bytes = 1 integer value)

| data = bytes 0 and 1
Q data = bytes 2 and 3

Big Endian ‘ B7 E9 ‘ 2A ‘ 53 ‘

H—’ H—/
| Q

To correctly swap bytes, you must group the data to maintain the I and Q values. One common
method is to break the two-byte integer into one-byte character values (0-255). Character values use

8 bits (1 byte) to identify a character. Remember that the maximum unsigned 8-bit value is 255 (28

— 1). Changing the data into character codes groups the data into bytes. The next step is then to
swap the bytes to align with big endian order.

NOTE The signal generator always assumes that downloaded data is in big endian order, so there is
no data order check. Downloading data in little endian order will produce an undesired
output signal.

DAC Input Values

The signal generator uses a 16-bit DAC (digital-to-analog convertor) to process each of the 2-byte
integer values for the I and Q data points. The DAC determines the range of input values required
from the I/Q data. Remember that with 16-bits we have a range of 0-65535, but the signal generator
divides this range between positive and negative values:

e 32767 = positive full scale output
e 0 = 0 volts
e —32768 = negative full scale output

Chapter 4 135

Creating and Downloading Waveform Files
Understanding Waveform Data

Because the DAC’s range uses both positive and negative values, the signal generator requires signed
input values. The following list illustrates the DAC’s input value range.

Voltage DAC Range Input Range Binary Data Hex Data
Vmax 65535 32767 01111111 11111111 TFFF

: 32768 1 00000000 00000001 0001
0 Volts 32767 0 00000000 00000000 0000

: 32766 -1 11111111 11111112 FFFF
Vmin 0 -32768 10000000 00000000 8000

Notice that it takes only 15 bits (215) to reach the Vmax (positive) or Vmin (negative) values. The
MSB determines the sign of the value. This is covered in “2’s Complement Data Format” on page 138.

Using E443xB ESG DAC Input Values

The signal generator’s input values differ from those of the earlier E443xB ESG models. For the
E443xB models, the input values are all positive (unsigned) and the data is contained within 14 bits
plus 2 bits for markers. This means that the E443xB DAC has a smaller range:

¢ 0 = negative full scale output
e 8192= 0 volts
¢ 16383 = positive full scale output

Although the signal generator uses signed input values, it accepts unsigned data created for the
E443xB and converts it to the proper DAC values. To download an E443xB files to the signal
generator, use the same command syntax as for the E443xB models. For more information on
downloading E443xB files, see “Downloading E443xB Signal Generator Files” on page 166.

Scaling DAC Values

The signal generator uses an interpolation algorithm (sampling between the I/Q data points) when
reconstructing the waveform. For common waveforms, this interpolation can cause overshoot, which
may create a DAC over-range error condition. Because of the interpolation, the error condition can
occur even when all the I and Q values are within the DAC input range. To avoid the DAC over-range
problem, you must scale (reduce) the I and Q input values, so that any overshoot remains within the
DAC range.

136 Chapter 4

Creating and Downloading Waveform Files
Understanding Waveform Data

Interpolation

<+—>

Interpolation

A L

Scaling effect

=

32767 m v

Maxinputvalue _ . __§__

DAC over-range No over-range

-32768

There is no single scaling value that is optimal for all waveforms. To achieve the maximum dynamic
range, select the largest scaling value that does not result in a DAC over-range error. There are two
ways to scale
the I/Q data:

¢ Reduce the input values for the DAC.
¢ Use the SCPI command : RAD 0: ARB: RSCal i ng <val > or the front-panel keys, Mode > Dual ARB >
ARB Setup > More (1 of 2) > Waveform Runtime Scaling, to set the waveform amplitude as a percentage

of full scale.

NOTE The signal generator comes from the factory with scaling set to 70%. If you reduce the DAC
input values, ensure that you set the signal generator scaling (: RAD 0: ARB: RSCal i ng) to an
appropriate setting that accounts for the reduced values.

To further minimize overshoot problems, use the correct FIR filter for your signal type and adjust
your sample rate to accommodate the filter response.

Chapter 4 137

Creating and Downloading Waveform Files
Understanding Waveform Data

2’s Complement Data Format

The signal generator requires signed values for the input data. For binary data, two’s complement is
a way to represent positive and negative values. The most significant bit (MSB) determines the sign.

* 0 equals a positive value (01011011 = 91 decimal)
¢ 1 equals a negative value (10100101 = -91 decimal)

Like decimal values, if you sum the binary positive and negative values, you get zero. The one
difference with binary values is that you have a carry, which is ignored. The following shows how to
calculate the two’s complement using 16-bits. The process is the same for both positive and negative
values.

Convert the decimal value to binary.
23710 = 01011100 10011110

Notice that 15 bits (0-14) determine the value and bit 16 (MSB) indicates a positive value.
Invert the bits (1 becomes 0 and 0 becomes 1).

10100011 01100001
Add one to the inverted bits. Adding one makes it a two’s complement of the original binary value.

10100011 01100001
+ 00000000 00000001
10100011 01100010

The MSB of the resultant is one, indicating a negative value (-23710).
Test the results by summing the binary positive and negative values; when correct, they produce zero.

01011100 10011110
+ 10100011 01100001
00000000 00000000

I and Q Interleaving

When you create the waveform data, the I and Q data points typically reside in separate arrays or
files. The signal generator requires a single I/Q file for waveform data playback. The process of
interleaving creates a single array with alternating I and Q data points, with the Q data following the
I data. This array is then downloaded to the signal generator as a binary file. The interleaved file
comprises the waveform data points where each set of data points, one I data point and one Q data
point, represents one I/Q waveform point.

NOTE The signal generator can accept separate I and Q files created for the earlier E443xB ESG
models. For more information on downloading E443xB files, see “Downloading E443xB Signal
Generator Files” on page 166.

The following figure illustrates interleaving I and @ data. Remember that it takes two bytes (16 bits)
to represent one I or Q data point.

138 Chapter 4

Creating and Downloading Waveform Files
Waveform Structure

MSB LSB MSB LSB

P

| Data Binary 11001010 01110110 01110111 00111110
Hex CA 76 77 3E

QData Binary 11101001 11001010 01011110 01110010
Hex E9 CA 5E 72

Interleaved Binary Data

Waveform data point Waveform data point
A A
- N I
11001010 01110110 11101001 11001010 01110111 00111110 01011110 01110010
. AN AN AN J
T ~ ~ N
| Data Q Data | Data Q Data

Interleaved Hex Data

Waveform Waveform
data point data point
A A
4 N7 A
CA 76 E9 CA 77 3E 5E 72

S e

| Data Q Data |Data Q Data

Waveform Structure

To play back waveforms, the signal generator uses data from the following three files:

¢ File header
¢ Marker file
o I/Q file

All three files have the same name, the name of the I/Q data file, but the signal generator stores
each file in its respective directory (headers, markers, and waveform). When you extract the
waveform file (I/Q data file), it includes the other two files, so there is no need to extract each one
individually. For more information on file extractions, see “Commands for Downloading and
Extracting Waveform Data” on page 146.

Chapter 4 139

Creating and Downloading Waveform Files
Waveform Structure

File Header

The file header contains settings for the ARB modulation format such as sample rate, marker polarity,
I/Q modulation attenuator setting and so forth. When you create and download I/Q data, the signal
generator automatically creates a file header with all saved parameters set to unspecified. With
unspecified header settings, the waveform either uses the signal generator default settings, or if a
waveform was previously played, the settings from that waveform. Ensure that you configure and save
the file header settings for each waveform. Refer to the ES8257D/67D PSG Signal Generators User’s
Guide for more information on file headers

NOTE If you have no RF output when you play back a waveform, ensure that the marker RF
blanking function has not been set for any of the markers. The marker RF blanking function
is a header parameter that can be inadvertently set active for a marker by a previous
waveform.

Marker File

The marker file uses one byte per I/Q waveform point to set the state of the four markers either on
(1) or off (0) for each I/Q point. When a marker is active (on), it provides an output trigger signal to
the rear panel EVENT connector that corresponds to the active marker number. Because markers are
set at each waveform point, the marker file contains the same number of bytes as there are waveform
points. For example, for 200 waveform points, the marker file contains 200 bytes.

Although a marker point is one byte, the signal generator uses only bits 0-3 to configure the
markers; bits 4-7 are reserved and set to zero. The following example shows a marker byte.

4 3 2 1 Marker Number Position
Marker Byte 0000 1 011

Reserved

Example of Setting a Marker Byte

Binary 0000 0101
Hex 05
Sets markers 1 and 3 on for a waveform point

The following example shows a marker binary file (all values in hex) for a waveform with 200 points.
Notice the first marker point, Of , shows all four markers on for only the first waveform point.

140 Chapter 4

Creating and Downloading Waveform Files
Waveform Structure

00000000: 0Of 01 0L 0l 01 01 0l ol 0l 01 ol ol ol o1 ol a1 Of =All markers on
00000010: 01 01 01 01 01 01 0L 01 01 01 01 01 01 01 01 01 91 = Marker 1 on
00000020: 01 0l 0L 01 01 01 0l 0l 0l 0l 0l 0l 0l ol ol ol

00000030: 01 05 05 05 05 05 05 05 05 05 05 05 05 05 05 o5 02 = Markers 1 .and 3 on
00000040: 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 04 = Marker 3 on
00000050: 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05
00000060: 05 05 05 05 04 04 04 04 04 04 04 04 04 04 04 04
00000070: 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04
00000080 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04
00000090: 04 04 04 04 04 04 00 00 00 00 OO0 00 00 00 00 OO
000000a0: 00 00 00 00 00 00 00 OO 00 00 OO0 00 00 00 00 OO
000000b0: 00 00 00 00 00 OO0 00 OO0 00 00 00 00 00 00 00 OO
ooooooco: 00 o0 oo o0 oo oo oo oo

00 = No active markers

If you create your own marker file, its name must be the same as the waveform file. If you download
I/Q data without a marker file, the signal generator automatically creates a marker file with all
points set to zero. For more information on markers, see the E8257D/67D PSG Signal Generators
User’s Guide.

NOTE Downloading marker data using a file name that currently resides on the signal generator
overwrites the existing marker file without affecting the I/Q (waveform) file. However
downloading just the I/Q data with the same file name as an existing I/Q file also overwrites
the existing marker file setting all bits to zero.

1/7Q File

The 1/Q file contains the interleaved I and Q data points (signed 16-bit integers for each I and Q
data point). Each I/Q point equals one waveform point. The signal generator stores the I/Q data in
the waveform directory.

NOTE If you download I/Q data using a file name that currently resides on the signal generator, it
also overwrites the existing marker file setting all bits to zero and the file header setting all
parameters to unspecified.

Waveform

A waveform consists of samples. When you select a waveform for playback, the signal generator loads
settings from the file header and creates the waveform samples from the data in the marker and 1I/Q
(waveform) files. The file header, while required, does not affect the number of bytes that compose a
waveform sample. One sample contains five bytes:

I/Q Data + Marker Data = 1 Waveform Sample
2 bytes| 2bytes Q 1byte (8 bits) 5 bytes
(16 bits) (16 bits) Bits 4-7 reserved—aBits 0-3 set

Chapter 4 141

Creating and Downloading Waveform Files
Waveform Phase Continuity

To create a waveform, the signal generator requires a minimum of 60 samples. To help minimize
signal imperfections, use an even number of samples (for information on waveform continuity, see
“Waveform Phase Continuity” on page 142). When you store waveforms, the signal generator saves
changes to the waveform file, marker file, and file header.

Waveform Phase Continuity

Phase Discontinuity, Distortion, and Spectral Regrowth

The most common arbitrary waveform generation use case is to play back a waveform that is finite
in length and repeat it continuously. Although often overlooked, a phase discontinuity between the
end of a waveform and the beginning of the next repetition can lead to periodic spectral regrowth
and distortion.

For example, the sampled sinewave segment in the following figure may have been simulated in
software or captured off the air and sampled. It is an accurate sinewave for the time period it
occupies, however the waveform does not occupy an entire period of the sinewave or some multiple
thereof. Therefore, when repeatedly playing back the waveform by an arbitrary waveform generator, a
phase discontinuity is introduced at the transition point between the beginning and the end of the
waveform.

Repetitions with abrupt phase changes result in high frequency spectral regrowth. In the case of
playing back the sinewave samples, the phase discontinuity produces a noticeable increase in
distortion components in addition to the line spectra normally representative of a single sinewave.

Sampled Sinewave with Phase Discontinuity

s - -
.-"; \\ _!; \\. ‘_‘,';
iy
‘. Phase T » "\
\ discontinuity * \
\ ' \
. A
. . : / . /
: 5 : / \ /
. Y ' é.f \ 4
' 3 ' It &,
' N t \ ’
: i ,,«f ' kY '
. =N . =
< >

Waveform length

142 Chapter 4

Creating and Downloading Waveform Files
Waveform Phase Continuity

Avoiding Phase Discontinuities

You can easily avoid phase discontinuities for periodic waveforms by simulating an integer number of
cycles when you create your waveform segment.

NOTE If there are N samples in a complete cycle, only the first N-1 samples are stored in the
waveform segment. Therefore, when continuously playing back the segment, the first and Nth
waveform samples are always the same, preserving the periodicity of the waveform.

By adding off time at the beginning of the waveform and subtracting an equivalent amount of off
time from the end of the waveform, you can address phase discontinuity for TDMA or pulsed periodic
waveforms. Consequently, when the waveform repeats, the lack of signal present avoids the issue of
phase discontinuity.

However, if the period of the waveform exceeds the waveform playback memory available in the
arbitrary waveform generator, a periodic phase discontinuity could be unavoidable. N5110B Baseband
Studio for Waveform Capture and Playback alleviates this concern because it does not rely on the
signal generator waveform memory. It streams data either from the PC hard drive or the installed
PCI card for N5110B enabling very large data streams. This eliminates any restrictions associated
with waveform memory to correct for repetitive phase discontinuities. Only the memory capacity of
the hard drive or the PCI card limits the waveform size.

Sampled Sinewave with No Discontinuity

- A " - r\ i
G o [
."J s .f« A .f«
¢ ~ 14 5 #
1 / 2Ql !_r
\ ; \ /
\ ¢ | A 7
3 g & o
' \& i \\ 7
: Y / : Added | p /
: ¥l ed sample))
A i ' A i
: 7 : Y 7
< >

Waveform length

The following figures illustrate the influence a single sample can have. The generated 3-tone test
signal requires 100 samples in the waveform to maintain periodicity for all three tones. The
measurement on the left shows the effect of using the first 99 samples rather than all 100 samples.
Notice all the distortion products (at levels up to —35 dBc) introduced in addition to the wanted

Chapter 4 143

Creating and Downloading Waveform Files

Waveform Memory

3-tone signal. The measurement on the right shows the same waveform using all 100 samples to
maintain periodicity and avoid a phase discontinuity. Maintaining periodicity removes the distortion

products.

i Aglant

Phase Discontinuity Phase Continuity

W glent

3-tone - 20 MHz Bandwidth 3-tone - 20 MHz Bandwidth
Measured distortion = 35 dBc Measured distortion = 86 dBc

Waveform Memory

The signal generator provides two types of memory, volatile and non-volatile. You can download files
to either memory type.

Volatile

Non-volatile

Random access memory that does not survive cycling of the signal generator
power. This memory is commonly referred to as waveform memory (WFM1) or
waveform playback memory. To play back waveforms, they must reside in volatile

memory. The following file types share this memory:

* I/Q ® marker * file header ® user PRAM

* waveform sequences (multiple I/Q files played together)
Storage memory where files survive cycling the signal generator power. Files
remain until overwritten or deleted. To play back waveforms after cycling the

signal generator power, you must load waveforms from non-volatile waveform
memory (NVWFM) to volatile waveform memory (WFM1). The following file types

share this memory:
* 1/Q * marker * file header ® instrument state

® user data ® user PRAM ® sweep list * waveform sequences (multiple I/Q files
played together)

144

Chapter 4

Creating and Downloading Waveform Files
Waveform Memory

The following figure shows the locations within the signal generator for volatile and non-volatile
waveform data.

Root directory

l USER

E443xB Volatile E443xB Non-volatile
waveform data waveform data Non-volatile waveform data
o o S I Y B ___J
ARBI ARBQ NVARBI NVARBQ HEADER MARKERS WAVEFORM SECUREWAVE

v v

Waveform sequences Volatile waveform directory
SEQ BBG1

Volatile waveform data

O O oo o

HEADER MARKERS WAVEFORM SECUREWAVE

Memory Allocation

Volatile Memory

The signal generator allocates volatile memory in blocks of 1024 bytes. For example, a waveform file
with 60 samples (the minimum number of samples) has 300 bytes (5 bytes per sample x 60 samples),
but the signal generator allocates 1024 bytes of memory. If a waveform is too large to fit into 1024
bytes, the signal generator allocates additional memory in multiples of 1024 bytes. For example, the
signal generator allocates 3072 bytes of memory for a waveform with 500 samples (2500 bytes).

3 x 1024 bytes = 3072 bytes of memory

As shown in the examples, waveforms can cause the signal generator to allocate more memory than
what is actually used, which decreases the amount of available memory.

Non-Volatile Memory

The signal generator allocates non-volatile memory in blocks of 512 bytes. For files less than or equal
to 512 bytes, the file uses only one block of memory. For files larger than 512 bytes, the signal
generator allocates additional memory in multiples of 512 byte blocks. For example, a file that has
21,5638 bytes consumes 43 memory blocks (22,016 bytes).

Chapter 4 145

Creating and Downloading Waveform Files
Commands for Downloading and Extracting Waveform Data

Memory Size

The amount of available memory, volatile and non-volatile, varies by option and the size of the other
files that share the memory. When we refer to waveform files, we state the memory size in samples
(one sample equals five bytes). The baseband generator (BBG) options (601 and 602) contain the
waveform playback memory. The following tables show the maximum available memory.

Volatile (WFM1) Memory Non- Volatile (NVWFM) Memory
Option Size Option Size
601 (BBG) 8 MSa (40 MB) Standard 3 MSa (15 MB)
602 (BBG) 64 MSa (320 MB) 005 (Hard disk) 1 GSa (5 GB)

Commands for Downloading and Extracting Waveform Data

You can download I/Q data and the associated file header and marker file information (collectively
called waveform data) into volatile or non-volatile memory. For information on waveform structure,
see “Waveform Structure” on page 139.

NOTE Before downloading files into volatile memory (WFML), turn off the ARB.
Press: Mode > Dual Arb > ARB Off On until Off highlights
Or send: [: SOURce] : RAD o: ARB[: STATe] COFF

The signal generator provides the option of downloading waveform data either for extraction or not
for extraction. When you extract waveform data, the signal generator encrypts the data. The SCPI
download commands determine whether the waveform data is extractable.

If you use SCPI commands to download waveform data to be extracted later, you must use the
MEM DATA: UNPRot ect ed command. If you use FTP commands, no special command syntax is
necessary.

You can download or extract waveform data created in any of the following ways:

¢ with signal simulation software, such as MATLAB or Agilent Advanced Design System (ADS)
¢ with advanced programming languages, such as C++, VB or VEE

¢ with Agilent Signal Studio software

¢ with the signal generator

Waveform Data Encryption

You can download encrypted waveform data extracted from one signal generator into another signal
generator with the same option or software license for the modulation format. You can also extract
encrypted waveform data created with software such as MATLAB or ADS, providing the data was
downloaded to the signal generator using the proper command.

When you generate a waveform from the signal generator’s internal ARB modulation format or
download a waveform from an Agilent Signal Studio software product, the resulting waveform data is
automatically stored in volatile memory and is available for extraction as an encrypted file.

The exception to encrypted file extraction is user-created I/Q data. You can extract this I/Q data
unencrypted.

146 Chapter 4

Creating and Downloading Waveform Files
Commands for Downloading and Extracting Waveform Data

Encrypted 1/Q Files and the Securewave Directory

The signal generator uses the secur ewave directory to perform file encryption (extraction) and
decryption (downloads). The secur ewave directory is not an actual storage directory, but rather a
portal for the encryption and decryption process. While the secur ewave directory contains file
names, these are actually pointers to the true files located in signal generator memory (volatile or
non- volatile). When you download an encrypted file, the secur ewave directory decrypts the file and
unpackages the contents into its file header, I/Q data, and marker data. When you extract a file, the
secur ewave directory packages the file header, I/Q data, and marker data and encrypts the waveform
data file.

The signal generator uses the following secur ewave directory paths for file extractions and encrypted
file downloads:

Volatile Juser/securewave/file_name or swfm.file_name

Non-volatile /user/bbgl/securewave/file_name or snvwfml:file_name

NOTE To extract files (other than user-created I/Q files) and to download encrypted files, you must
use the securewave directory. If you attempt to extract previously downloaded encrypted
files (including Signal Studio downloaded files or internally created signal generator files)
without using the securewave directory, the signal generator generates an error and displays
ERRCR 221, Access Deni ed.

File Transfer Methods

¢ SCPI using VXI-11 (VMEbus Extensions for Instrumentation as defined in VXI-11)
* SCPI over the GPIB or RS 232

¢ SCPI with sockets LAN (using port 5025)

¢ File Transfer Protocol (FTP)

SCPI Command Line Structure

The signal generator expects to see waveform data as block data (binary files). The IEEE standard
488.2-1992 section 7.7.6 defines block data. The following example shows how to structure a SCPI
command for downloading waveform data (#ABC represents the block data):

: MVEM DATA "<fil e_name>", #ABC
"<file_nanme>" thel/Q file name and file path within the signal generator

indicates the start of the data block

A the number of decimal digits present in B

B adecimal number specifying the number of data bytesto follow in C
C the actual binary waveform data

The following example demonstrates this structure:
MVEM DATA |“ WFML: my_fi e”|, #13 |240| 129%8! 4&07#89* YO@ . . .

file_name A B C

Chapter 4 147

Creating and Downloading Waveform Files
Commands for Downloading and Extracting Waveform Data

WEML: the file path

ny_file the 1/Q file name asit will appear in the signal generator’s memory catal og
indicates the start of the data block

3 B has three decimal digits

240 240 bytes of datato follow in C

129%8! 4&07#8g* YO @ . . . the ASCII representation of some of the binary data downloaded to the

signal generator, however not all ASCII values are printable

NOTE If you use SCPI with sockets to send data to the signal generator, you must provide an
end- of-file indicator, as shown in the following command:
MVEM DATA "WFML: <fi | e_name>", <bl ockdat a>NL"END

Commands and File Paths for Downloading and Extracting Waveform Data

You can download or extract waveform data using the commands and file paths in the following
tables:

¢ Table 4-1, “Downloading Unencrypted Files for No Extraction,” on page 148
¢ Table 4-2, “Downloading Encrypted Files for No Extraction,” on page 149

¢ Table 4-3, “Downloading Unencrypted Files for Extraction,” on page 149

e Table 4-4, “Downloading Encrypted Files for Extraction,” on page 150

¢ Table 4-5, “Extracting Encrypted Waveform Data,” on page 150

Table 4-1 Downloading Unencrypted Files for No Extraction

Download Method/ Command Syntax Options
Memory Type

SCPI/volatile memory MVEM DATA "WFML: <fi | e_nanme>", <bl ockdat a>
MVEM DATA "MKR1: <fi | e_name>", <bl ockdat a>
MVEM DATA "HDR1: <fi | e_name>", <bl ockdat a>

SCPI/volatile memory with MVEM DATA "user/ bbgl/ wavef orni <f i | e_nanme>", <bl ockdat a>
full directory path MVEM DATA "user/ bbgl/ mar ker s/ <fi | e_nane>", <bl ockdat a>
MVEM DATA "user/ bbgl/ header/ <fi | e_nane>", <bl ockdat a>

SCPI/non-volatile memory MVEM DATA "NWIM <fi | e_nane>", <bl ockdat a>
MVEM DATA "NVMKR <fi |l e_nane>", <bl ockdat a>
MVEM DATA "NVHDR <fil e_nane>", <bl ockdat a>

SCPI/non-volatile memory MVEM DATA / user/wavef orni <fil e_name>", <bl ockdat a>
with full directory path MVEM DATA / user/ mar ker s/ <fi | e_nanme>", <bl ockdat a>
MVEM DATA / user/ header/ <fi | e_name>", <bl ockdat a>

148 Chapter 4

Creating and Downloading Waveform Files
Commands for Downloading and Extracting Waveform Data

Table 4-2 Downloading Encrypted Files for No Extraction

Download Method
/Memory Type

Command Syntax Options

SCPI/volatile memory

MVEM DATA "user/ bbgl/ secur ewave/ <fil e_nanme>", <bl ockdat a>
MVEM DATA " SWFML: <f i | e_nane>", <bl ockdat a>
MVEM DATA "fil e_nane@WML", <bl ockdat a>

SCPI/non-volatile memory

MVEM DATA "user/ secur ewave/ <fil e_name>", <bl ockdat a>
MVEM DATA " SNWWWFM <f i | e_name>", <bl ockdat a>
MVEM DATA "fi | e_name @GNVWFM', <bl ockdat a>

Table 4-3 Downloading Unencrypted Files for Extraction

Download Method/
Memory Type

Command Syntax Options

SCPI/volatile memory

MEM DATA: UNPRot ect ed
MEM DATA: UNPRot ect ed
MEM DATA: UNPRot ect ed
MEM DATA: UNPRot ect ed
MEM DATA: UNPRot ect ed
MEM DATA: UNPRot ect ed
MEM DATA: UNPRot ect ed
MEM DATA: UNPRot ect ed
MEM DATA: UNPRot ect ed

"/ user/bbgl/ wavef orni fil e_nane", <bl ockdat a>
"/ user/ bbgl/ markers/file_nanme", <bl ockdat a>
"/ user/bbgl/ header/fil e_nane", <bl ockdat a>
"WFML: fi | e_nanme", <bl ockdat a>

"MKRL: fil e_nane", <bl ockdat a>

"HDRL: fil e_name", <bl ockdat a>
"file_name@¥M", <bl ockdat a>
"file_name@KRL", <bl ockdat a>
"file_name@DRL", <bl ockdat a>

SCPI/non-volatile
memory

MEM DATA: UNPRot ect ed
MEM DATA: UNPRot ect ed
MEM DATA: UNPRot ect ed
MEM DATA: UNPRot ect ed
MEM DATA: UNPRot ect ed
MEM DATA: UNPRot ect ed
MEM DATA: UNPRot ect ed
MEM DATA: UNPRot ect ed
MEM DATA: UNPRot ect ed

"/ user/wavefornifil e_nane", <bl ockdat a>
"/ user/ markers/file_name", <bl ockdat a>
"/ user/ header/fil e_nane", <bl ockdat a>
"NVWFM fil e_nane", <bl ockdat a>

"NVMKR fil e_nane", <bl ockdat a>

"NVHDR fi | e_nane", <bl ockdat a>

"fil e_name@WWFM', <bl ockdat a>

"fil e_name@WWKR', <bl ockdat a>

"fil e_name@WHDR', <bl ockdat a>

FTP/volatile memory?®

put <file_name> /user/bbgl/ waveforn <fil e_nane>
put <file_name> /user/bbgl/ narkers/<file_nane>

FTP/non- volatile
memory?

put <file_name> /user/waveforn <fil e_nane>
put <file_name> /user/markers/<file_name>

a. See “FTP Procedures” on page 150.

Chapter 4

149

Creating and Downloading Waveform Files
Commands for Downloading and Extracting Waveform Data

Table 4-4 Downloading Encrypted Files for Extraction

Download Command Syntax Options
Method/Memory
Type
SCPI/volatile MEM DATA: UNPRot ect ed "/ user/ bbgl/ secur ewave/ fil e_nanme", <bl ockdat a>
memory MEM DATA: UNPRot ect ed " SWFML: f i | e_nane", <bl ockdat a>

MEM DATA: UNPRot ect ed "fi |l e_name@WML", <bl ockdat a>
SCPI/non-volatile MEM DATA: UNPRot ect ed "/ user/ secur enave/ fil e_name", <bl ockdat a>
memory MEM DATA: UNPRot ect ed " SNWWFM fi | e_nane", <bl ockdat a>

MEM DATA: UNPRot ect ed "fi | e_name@NVWWFM', <bl ockdat a>
FTP/volatile put <file_name> /user/bbgl/ securewave/ <fil e_nane>
memory?
FTP/non-volatile put <file_name> /user/securewave/ <file_nane>
memory?

a. See “FTP Procedures” on page 150.

Table 4-5 Extracting Encrypted Waveform Data

Download Command Syntax Options
Method/Memory
Type
SCPI/volatile MVEM DATA? "/ user/bbgl/ secur enave/ fil e_nane"
memory MVEM DATA? "SWFML: fil e_nane"

MVEM DATA? "fil e_name @WML"
SCPI/non-volatile MVEM DATA? "/ user/ secur enave/ fil e_nane"
memory MVEM DATA? " SNWAFM fi | e_name"”

MVEM DATA? “fil e_name@NVWWFM'
FTP/volatile get /user/bbgl/ securewave/ <fil e_name>
memory?
FTP/non-volatile get /user/securewave/ <file_nane>
memory?®

a. See FTP Procedures.

FTP Procedures
There are three ways to FTP files:

e use Microsoft’s ® Internet Explorer FTP feature!
e use the signal generator’s internal web server
¢ use the PC’s or UNIX command window

150

Chapter 4

Creating and Downloading Waveform Files
Commands for Downloading and Extracting Waveform Data

Using Microsoft’s Internet Explorer

1.

3.

Enter the signal generator’s hostname or IP address as part of the FTP URL.
ftp://<host name> or <IP address>

Press Enter on the keyboard or Go from the Internet Explorer window.

The signal generator files appear in the Internet Explorer window.

Drag and drop files between the PC and the Internet Explorer window

Using the Signal Generator’s Internal Web Server

1.

3.

Enter the signal generator’s hostname or IP address in the URL.

http://<host name> or <IP address>

Click the Signal Generator FTP Access button located on the left side of the window.
The signal generator files appear in the web browser’s window.

Drag and drop files between the PC and the browser’s window

For more information on the web server feature, see “Communicating with the Signal Generator Using
a Web Browser” on page 27.

Using the Command Window (PC or UNIX)

This procedure downloads to non-volatile memory. To download to volatile memory, change the file
path.

1.

From the PC command prompt or UNIX command line, change to the destination directory for the
file you intend to download.

From the PC command prompt or UNIX command line, type ft p <i nstrunent name>. Where
i nstrunent nane is the signal generator’s hostname or IP address.

At the User: prompt in the ftp window, press Enter (no entry is required).
At the Passwor d: prompt in the ftp window, press Enter (no entry is required).

put <file_nanme> /user/waveforni <file_nanel>

where <fil e_name> is the name of the file to download and <fil e_nanel> is the name
designator for the signal generator’s /user/waveforni directory.

* If a marker file is associated with the data file, use the following command to download it to

put <marker file_name> /user/narkers/<file_nanmel>

where <marker file_name> is the name of the file to download and <fil e_nanel> is the
name designator for the file in the signal generator’s /user/ nmarkers/ directory. Marker files
and the associated I/Q waveform data have the same name.

2.
3.
At the ftp prompt, type:
the signal generator:
1.

Microsoft is a U.S registered trademark of Microsoft Corporation.

Chapter 4 151

Creating and Downloading Waveform Files
Creating Waveform Data

NOTE If no marker fileis provided, the signal generator automatically creates a default marker file
consisting of all zeros.

6. At the ftp prompt, type: bye
7. At the command prompt, type: exit

Creating Waveform Data

This section examines the C++ code algorithm for creating I/Q waveform data by breaking the
programming example into functional parts and explaining the code in generic terms. This is done to
help you understand the code algorithm in creating the I and Q data, so you can leverage the concept
into your programming environment. If you do not need this level of detail, you can find the
complete programming example in “Programming Examples” on page 169.

You can use various programming environments to create ARB waveform data. Generally there are
two types:

¢ Simulation software— this includes MATLAB, Agilent Technologies EESof Advanced Design
System (ADS), Signal Processing WorkSystem (SPW), and so forth.

¢ Advanced programming languages—this includes, C++, VB, VEE, MS Visual Studio.Net, Labview,
and so forth.

No matter which programming environment you use to create the waveform data, make sure that the
data conforms to the data requirements shown on page 132. To learn about I/Q data for the signal
generator, see “Understanding Waveform Data” on page 132.

Code Algorithm

This section uses code from the C++ programming example “Importing, Byte Swapping, Interleaving,
and Downloading I and Q Data—Big and Little Endian Order” on page 187 to demonstrate how to
create and scale waveform data.

There are three steps in the process of creating an 1/Q waveform:

1. Create the I and Q data.

2. Save the I and Q data to a text file for review.

3. Interleave the I and Q data to make an I/Q file, and swap the byte order for little-endian
platforms.

For information on downloading I/Q waveform data to a signal generator, refer to “Commands and
File Paths for Downloading and Extracting Waveform Data” on page 148 and “Downloading Waveform
Data” on page 157.

1. Create | and Q data.
Thefollowing lines of code create scaled | and Q datafor asine wave. The | data consists of one period of a

sine wave and the Q data consists of one period of a cosine wave.

152 Chapter 4

Creating and Downloading Waveform Files
Creating Waveform Data

Line Code—Create I and Q data

1 const int NUVBAMPLES=500;

2 mai n(int argc, char* argv[]);

3 {

4 short i data[NUMSAMPLES] ;

5 short qgdat a[NUMSAMPLES] ;

6 int numsanpl es = NUVBAMPLES,

7 for(int index=0; index<nunsanpl es; index++);

8 {

9 i dat a[i ndex] =23000 * sin((2*3. 14*i ndex)/ nunsanpl es) ;

10 gdat a[i ndex] =23000 * cos((2*3. 14*i ndex)/ nunmsanpl es) ;

11 }

Line Code Description—Create I and Q data

1 Define the number of waveform points. Note that the maximum number of waveform points that
you can set is based on the amount of available memory in the signal generator. For more
information on signal generator memory, refer to “Waveform Memory” on page 144.

2 Define the main function in C++.

4 Create an array to hold the generated I values. The array length equals the number of the
waveform points. Note that we define the array as type short, which represents a 16-bit signed
integer in most C++ compilers.

5 Create an array to hold the generated Q values (signed 16-bit integers).

6 Define and set a temporary variable, which is used to calculate the I and Q values.

Chapter 4

153

Creating and Downloading Waveform Files
Creating Waveform Data

Code Description—Create I and Q data

Create a loop to do the following:

* Generate and scale the I data (DAC values). This example uses a simple sine equation,
where 2*3.14 equals one waveform cycle. Change the equation to fit your application.

— The array pointer, index, increments from 0-499, creating 500 I data points over
period of the sine waveform.

one

— Set the scale of the DAC values in the range of —-32767 to 32768, where the values
—32767 and 32768 equal full scale negative and positive respectively. This example uses
23000 as the multiplier, resulting in approximately 70% scaling. For more information on

scaling, see “Scaling DAC Values” on page 136.

NOTE The signal generator comes from the factory with 1/Q scaling set to 70%. If
you reduce the DA C input values, ensure that you set the signal generator

scaling (: RAD o: ARB: RSCal i ng) to an appropriate setting that
accounts for the reduced values.

* Generate and scale the Q data (DAC value). This example uses a simple cosine equation,

where 2*3.14 equals one waveform cycle. Change the equation to fit your application.

— The array pointer, index, increments from 0-499, creating 500 Q data points over one

period of the cosine waveform.

— Set the scale of the DAC values in the range of —32767 to 32768, where the values
—32767 and 32768 equal full scale negative and positive respectively. This example uses
23000 as the multiplier, resulting in approximately 70% scaling. For more information on

scaling, see “Scaling DAC Values” on page 136.

2. Save the I/Q data to a text file to review.

The following lines of code export the I and Q data to a text file for validation. After exporting the
data, open the file using Microsoft Excel or a similar spreadsheet program, and verify that the I and
Q data are correct.

Line Code Description—Saving the I/Q Data to a Text File
12 char *ofile = "c:\\tenp\\iq.txt";
13 FILE *outfile = fopen(ofile, "w');
14 if (outfile==NULL) perror ("Error opening file to wite");
15 for(index=0; index<nunsanples; index++)
16 {
17 fprintf(outfile, "%, %l\n", idata[index], qdata[index]);
18 }
19 fclose(outfile);
154

Chapter 4

Creating and Downloading Waveform Files
Creating Waveform Data

Line Code Description—Saving the I/Q Data to a Text File

12 Set the absolute path of a text file to a character variable. In this example, iq.txt is the file
name and *ofile is the variable name.
For the file path, some operating systems may not use the drive prefix (‘c:’ in this example), or
may require only a single forward slash (/), or both ("/templ/ iq.txt")

13 Open the text file in write format.

14 If the text file does not open, print an error message.

15-18 Create a loop that prints the array of generated I and Q data samples to the text file.
19 Close the text file.

3. Interleave the | and Q data, and byte swap if using little endian order.

This step has two sets of code:

¢ Interleaving and byte swapping I and Q data for little endian order
¢ Interleaving I and Q data for big endian order

For more information on byte order, see “Little Endian and Big Endian (Byte Order)” on page 134.

Line Code—Interleaving and Byte Swapping for Little Endian Order
20 char i gbuffer[NUMBAVPLES* 4] ;
21 for (i ndex=0; index<nunsanpl es; index++)
22 {
23 short ivalue = idata[index];
24 short qval ue = qdata[i ndex];
25 i gbuf f er[i ndex*4] = (ivalue >> 8) & OxFF;
26 i gbuf fer[i ndex*4+1] = ival ue & OxFF;
27 i gbuf f er[i ndex*4+2] = (qval ue >> 8) & OxFF;
28 i gbuffer[index*4+3] = qval ue & OxFF;
29 }
30 return O,
Line Code Description—Interleaving and Byte Swapping for Little Endian Order
20 Define a character array to store the interleaved I and Q data. The character array makes byte

swapping easier, since each array location accepts only 8 bits (1 byte). The array size increases
by four times to accommodate two bytes of I data and two bytes of Q data.

Chapter 4

155

Creating and Downloading Waveform Files
Creating Waveform Data

Line Code Description—Interleaving and Byte Swapping for Little Endian Order
21-29 Create a loop to do the following:

¢ Save the current I data array value to a variable.

NOTE In rare instances, a compiler may define short as larger than 16 bits. If this condition
exists, replace short with the appropriate object or label that defines a 16-bit
integer.

* Save the current Q data array value to a variable.

¢ Swap the low bytes (bits 0-7) of the data with the high bytes of the data (done for both

21-29 the I and Q data), and interleave the I and Q data.

shift the data pointer right 8 bits to the beginning of the high byte (fvalue >> 8)
Little Endian Order

7 6 54 3 2 1 0 15 14 1312 1110 9 8 BitPosition
11101001 101101 11 Dpata
* ______ > * Hex values = E9 B7
Data pointer Data pointer shifted 8 bits

AND (boolean) the high I byte with OXFF to make the high I byte the value to store in
the 1Q array—(tvalue >> 8) & OxFF

15 14 1312 1110 9 8

101101 11 Hexvalue=B7
111111 11 Hexvalue=FF
101101 11 Hexvalue=B7

AND (boolean) the low I byte with OxFF (tvalue & OxFF) to make the low I byte the
value to store in the I/Q array location just after the high byte [index * 4 + 1]

| Data in 1/Q Array after Byte Swap (Big Endian Order)

15 14 1312 1110 9 8 7 6 5 4 3 2 1 0 BitPosition

10110111 11101001 Data
Hex value = B7 E9
Swap the Q byte order within the same loop. Notice that the I and Q data interleave
with each loop cycle. This is due to the I/Q array shifting by one location for each I and
Q operation [index * 4 + n].

Interleaved 1/Q Array in Big Endian Order

15 8 T 0 15 T 0 Bit Position
101101111211201001 1110010101101011 pata
“ O /

~ ~

| Data Q Data

156

Chapter 4

Creating and Downloading Waveform Files
Downloading Waveform Data

Line Code—Interleaving I and Q data for Big Endian Order
20 short i qgbuffer[NUMSAMPLES* 2] ;
21 for(index=0; index<numsanples; index++)
22 {
23 i gbuf f er[i ndex*2] = idata[index];
24 i gbuf f er[i ndex*2+1] = qdata[i ndex];
25 }
26 return O,
Line Code Description—Interleaving I and Q data for Big Endian Order
20 Define a 16-bit integer (short) array to store the interleaved I and Q data. The array size

increases by two times to accommodate two bytes of I data and two bytes of Q data.

NOTE In rare instances, a compiler may define short as larger than 16 bits. If this condition
exists, replace short with the appropriate object or label that defines a 16-bit integer.

21-25 Create a loop to do the following:

¢ Store the I data values to the I/Q array location [index*2].
¢ Store the Q data values to the I/Q array location [index*2+1].

Interleaved 1/Q Array in Big Endian Order

LT 8 T, 0 15 8 T, o Bit Position
1011011121211201001 1110010101101011 pata
N O\ J

~ ~

| Data Q Data

To download the data created in the above example, see “Using Advanced Programming Languages”
on page 160.

Downloading Waveform Data

This section examines methods of downloading I/Q waveform data created in MATLAB (a simulation
software) and C++ (an advanced programming language). For more information on simulation and
advanced programming environments, see “Creating Waveform Data” on page 152.

To download data from simulation software environments, it is typically easier to use one of the free
download utilities (described on page 166), because simulation software usually saves the data to a
file. In MATLAB however, you can either save data to a .mat file or create a complex array. To
facilitate downloading a MATLAB complex data array, Agilent created the PSG/ESG Download
Assistant (one of the free download utilities), which downloads the complex data array from within
the MATLAB environment. This section shows how to use the download assistant.

For advanced programming languages, this section closely examines the code algorithm for
downloading I/Q waveform data by breaking the programming examples into functional parts and
explaining the code in generic terms. This is done to help you understand the code algorithm in

Chapter 4 157

Creating and Downloading Waveform Files
Downloading Waveform Data

downloading the interleaved I/Q data, so you can leverage the concept into your programming
environment. While not discussed in this section, you may also save the data to a binary file and use
one of the download utilities to download the waveform data (see “Using the Download Utilities” on
page 166).

If you do not need the level of detail this section provides, you can find complete programming
examples in “Programming Examples” on page 169. Prior to downloading the I/Q data, ensure that it
conforms to the data requirements shown on page 132. To learn about I/Q data for the signal
generator, see “Understanding Waveform Data” on page 132. For creating waveform data, see
“Creating Waveform Data” on page 152.

NOTE Before downloading files into volatile memory (WFML), turn off the ARB.
Press: Mode > Dual Arb > ARB Off On until Off highlights
Or send: [: SOURce] : RAD o: ARB[: STATe] COFF

Using Simulation Software

This procedure uses a complex data array created in MATLAB and uses the PSG/ESG Download
Assistant to download the data. To obtain the PSG/ESG Download Assistant, see “Using the Download
Utilities” on page 166.

There are two steps in the process of downloading an I/Q waveform:
1. Open a connection session.

2. Download the I/Q data.

1. Open a connection session with the signal generator.

The following code establishes a LAN connection with the signal generator, sends the IEEE SCPI
command *i dn?, and if the connection fails, displays an error message.

Line Code—Open a Connection Session

1 io = agt_newconnection('tcpip','|P address');
% o = agt_newconnection('gpib', <primary address>, <secondary address>);

2 [status, status_description,query_result] = agt_query(io,'*idn?");
3 if status == -1

4 display ‘fail to connect to the signal generator’;

5 end;

158 Chapter 4

Creating and Downloading Waveform Files
Downloading Waveform Data

Line Code Description—Open a Connection Session with the Signal Generator
1 Sets up a structure (indicated above by i0) used by subsequent function calls to establish a LAN
connection to the signal generator.
* agt_newconnection() is the function of Agilent Download Assistant used in MATLAB to
build a connection to the signal generator.
¢ If you are using GPIB to connect to the signal generator, provide the board, primary
address, and secondary address: {0 = agt_newconnection('gpib’,0,19);
Change the GPIB address based on your instrument setting.
2 Send a query to the signal generator to verify the connection.
* agt_query() is an Agilent Download Assistant function that sends a query to the signal
generator.
¢ If signal generator receives the query *i dn?, status returns a zero and query_result returns
the signal generator’s model number, serial number, and firmware version.
3-5 If the query fails, display a message.

2. Download the 1/Q data
The following code downloads the generated waveform data to the signal generator, and if the download

fals, displays amessage.

Line Code—Download the I/Q data
6 [status, status_description] = agt_waveform oad(io, | Quave, 'wavefornfilel' , 2000,
‘no_play', ' normscale');
7 if status == -
8 display ‘fail to download to the signal generator’;
9 end;
Chapter 4 159

Creating and Downloading Waveform Files
Downloading Waveform Data

Line Code Description—Download the I/Q data

6 Download the I/Q waveform data to the signal generator by using the function call
(agt_waveformload) from the Agilent Download Assistant. Some of the arguments are optional
as indicated below, but if one is used, you must use all arguments previous to the one you
require.

Notice that with this function, you can perform the following actions:
* download complex I/Q data

* name the file (optional argument)
+ set the samplerate (optional argument)

If you do not set avalue, the signal generator uses its preset value of 100 MHz, or if a
waveform was previously play, the value from that waveform.

» dtart or not start waveform playback after downloading the data (optional argument)

Use either the argument play or the argument no_play.

« whether to normalize and scale the I/Q data (optional argument)

If you normalize and scale the data within the body of the code, then use no_normscale, but
if you need to normalize and scale the data, use norm_scale. This normalizes the waveform
data to the DAC values and then scales the data to 70% of the DAC values.

» download marker data (optional argument)

If there is no marker data, the signal generator creates a default marker file, all marker set
to zero.

To verify the waveform data download, see “Loading, Playing, and Verifying a Downloaded
Waveform” on page 164.

7-9 If the download fails, display an error message.

Using Advanced Programming Languages

This procedure uses code from the C++ programming example “Importing, Byte Swapping,
Interleaving, and Downloading I and Q Data—Big and Little Endian Order” on page 187.

For information on creating I/Q waveform data, refer to “Creating Waveform Data” on page 152.
There are two steps in the process of downloading an I/Q waveform:

1. Open a connection session.
2. Download the I/Q data.

1. Open a connection session with the signal generator.
The following code establishes aLAN connection with the signal generator or prints an error message if the
session is not opened successfully.

160 Chapter 4

Creating and Downloading Waveform Files
Downloading Waveform Data

Line Code Description—Open a Connection Session
1 char* instQpenString ="l an[host nane or | P address]";
//char* instQpenString ="gpi b<prinary addr>, <secondary addr>";
2 I NST i d=i open(i nst QpenString);
3 if (lid)
4 {
5 fprintf(stderr, "iopen failed (%)\n", instQpenString);
6 return -1;
7 }
Line Code Description—Open a Connection Session
1 Assign the signal generator’s LAN hostname, IP address, or GPIB address to a character string.
¢ This example uses the Agilent 10 library’s ‘open() SICL function to establish a LAN
connection with the signal generator. The input argument, lan/hostname or IP address]
contains the device, interface, or commander address. Change it to your signal generator
host name or just set it to the IP address used by your signal generator. For example:
“lan[999.137.240.9]”
¢ If you are using GPIB to connect to the signal generator, use the commented line in place of
the first line. Insert the GPIB address based on your instrument setting, for example
“gpib0,19”.
¢ For the detailed information about the parameters of the SICL function topen(), refer to the
online “Agilent SICL User’s Guide for Windows.”
2 Open a connection session with the signal generator to download the generated 1/Q data.
The SICL function iopen() is from the Agilent IO library and creates a session that returns an
identifier to id.
e If 7open() succeeds in establishing a connection, the function returns a valid session ¢d. The
valid session #d is not viewable, and can only be used by other SICL functions.
e If jopen() generates an error before making the connection, the session identifier is set to
zero. This occurs if the connection fails.
* To use this function in C++, you must include the standard header
#include <sicl.h> before the main() function.
3-7 If ?d = 0, the program prints out the error message and exits the program.

Chapter 4

161

Creating and Downloading Waveform Files
Downloading Waveform Data

2. Download the 1/Q data.
The following code sends the SCPI command and downloads the generated waveform data to the signal

generator.
Line CodeDescription—Download the I/Q Data
8 int bytesToSend;
9 byt esToSend = nunsanpl es*4;
10 char s[20];
11 char cnd[200] ;
12 sprintf(s, "%l", bytesToSend);
13 sprintf(cnd, ":MEM DATA \"WML: FI LE1\ ", #%l%l", strlen(s), bytesToSend);
iwite(id, cnd, strlen(cnd), 0, 0);
14 iwite(id, iqgbuffer, bytesToSend, 0, 0);
15 iwite(id, "\n", 1, 1, 0);
16
Line Code Description—Download the 1/Q data
8 Define an integer variable (bytesToSend) to store the number of bytes to send to the signal
generator.
9 Calculate the total number of bytes, and store the value in the integer variable defined in line 8.
In this code, numsamples contains the number of waveform points, not the number of bytes.
Because it takes four bytes of data, two I bytes and two Q bytes, to create one waveform point,
we have to multiply numsamples by four. This is shown in the following example:
numsamples = 500 waveform points
numsamples X4 = 2000 (four bytes per point)
bytesToSend = 2000 (numsamples % 4)
For information on setting the number of waveform points, see “1. Create I and Q data.” on
page 152.
10 Create a string large enough to hold the bytesToSend value as characters. In this code, string s
is set to 20 bytes (20 characters—one character equals one byte)
11 Create a string and set its length (¢md[200]) to hold the SCPI command syntax and
parameters. In this code, we define the string length as 200 bytes (200 characters).
12 Store the value of bytesToSend in string s. For example, if bytesToSend = 2000; s = "2000”
13 Store the SCPI command syntax and parameters in the string cmd. The SCPI command prepares
the signal generator to accept the data.
* sprintf() is a standard function in C++, which writes string data to a string variable.
¢ strlen() is a standard function in C++, which returns length of a string.
e If bytesToSend = 2000, then s = “2000”, strlien(s) = 4, so
cmd = :MEM:DATA "WFM1:FILE1\” #42000.
162

Chapter 4

Creating and Downloading Waveform Files
Downloading Waveform Data

Line Code Description—Download the 1/Q data
14 Send the SCPI command stored in the string cmd to the signal generator, which is represented

by the session id.

¢ qwrite() is a SICL function in Agilent IO library, which writes the data (block data) specified
in the string cmd to the signal generator (id).

* The third argument of ‘write(), strlen(cmd), informs the signal generator of the number of
bytes in the command string. The signal generator parses the string to determine the
number of I/Q data bytes it expects to receive.

* The fourth argument of iwrite(), zero, means there is no END indicator for the string. This
lets the session remain open, so the program can download the I/Q data.

15 Send the generated waveform data stored in the I/Q array (igbuffer) to the signal generator.

* qJwrite() sends the data specified in igbuffer to the signal generator (session identifier
specified in 7d).

¢ The third argument of ‘write(), bytesToSend, contains the length of the igbuffer in bytes. In
this example, it is 2000.

* The fourth argument of ‘write(), 0, means there is no END indicator in the data.

In many programming languages, there are two methods to send SCPI commands and data:

— Method 1 where the program stops the data download when it encounters the first zero
(END indicator) in the data.

— Method 2 where the program sends a fixed number of bytes and ignores any zeros in
the data. This is the method used in our program.

For your programming language, you must find and use the equivalent of method two.

Otherwise you may only achieve a partial download of the I and Q data.

16 Send the terminating carriage (\n) as the last byte of the waveform data.

* qwrite() writes the data “\n” to the signal generator (session identifier specified in id).

* The third argument of ‘write(), 1, sends one byte to the signal generator.

¢ The fourth argument of iwrite(), 1, is the END indicator, which the program uses to
terminate the data download.

To verify the waveform data download, see “Loading, Playing, and Verifying a Downloaded

Waveform” on page 164.
Chapter 4 163

Creating and Downloading Waveform Files
Loading, Playing, and Verifying a Downloaded Waveform

Loading, Playing, and Verifying a Downloaded Waveform

The following procedures show how to perform the steps using either front- panel key presses or SCPI
commands.

Loading a File from Non-Volatile Memory

Select the downloaded I/Q file in non-volatile waveform memory (NVWFM) and load it into volatile
waveform memory (WFM1). The file comprises three items: I/Q data, marker file, and file header
information. Loading the I/Q file also loads the marker file and file header.

¢ From the front panel:
1. Press Mode > Dual ARB > Select Waveform > Waveform Segments > Load Store until Load highlights.
2. Highlight the I/Q file in the NVWFM catalog.
3. Press Load Segment From NVWFM Memory.
4. Press Return.

* Remotely send one of the following SCPI command to copy the I/Q file, marker file and file
header information:

: MEMory: CCPY[NAME] "<NWWM fi | e_nane>", "<WFML: fi | e_nanme>"
: MEMory: COPY[NAMVE] " <NVIWKR fi | e_name>", " <MKR1L: fi | e_nane>"

NOTE When you copy awaveform file or marker file information from volatile or non-volatile
memory, the waveform and associated marker and header files are all copied. Conversely,
when you delete an 1/Q file, the associated marker and header files are deleted. It is not
necessary to send separate commands to copy or delete the marker and header files.

Playing the Waveform

Play the waveform and use it to modulate the RF carrier.
1. Select the waveform from the volatile memory waveform list:
* From the front panel:
a. Press Mode > Dual ARB > Select Waveform.
b. Highlight the desired waveform.
c. Press Select Waveform.
* Remotely send the following SCPI command:
[SOURce}: RAD o: ARB: WAVef orm "WFML: <f i | e_nane>"
2. Play the waveform:
* From the front panel:
a. Press ARB Off Onuntil On is highlighted.
b. Press Mod On/Off until the MOD ON annunciator appears on the display.

164 Chapter 4

Creating and Downloading Waveform Files
Loading, Playing, and Verifying a Downloaded Waveform

c. Press RFOn/0ff until the RF ON annunciator appears on the display.

Remotely send the following SCPI commands:

[SOURce] : RAD o: ARB[: STATe] ON
: QUTPut : MCDul at i on[: STATe] ON
: QUTPut [: STATe] ON

Verifying the Waveform

Perform this procedure after completing the steps in the previous procedure, Playing the Waveform.

1. Connect the signal generator to an oscilloscope as shown in the figure.

~

Oscilloscope

SIGNAL GENERATOR

N
. Trigger Input

2. Set an active marker point on the first waveform point for marker one.

* From the front panel:
a. Press ARB Setup > Marker Utilities > Set Markers.
b. Highlight the same waveform selected in “Playing the Waveform” on page 164.
c. Press SetMarkers > Marker1234 to 1.
d. Press Set Markers Off All Points > Set Marker on First Point.

* Remotely send the following SCPI commands:
a. [:SOURce]: RAD o: ARB: MARKer : CLEar: ALL "WFML: <fi |l e_name>", 1
b. [:SOURce]: RAD o: ARB: MARKer : [SET] "WFML: <fi |l e_name>", 1,1, 1, 0.

3. Compare the oscilloscope display to the plot of the I and Q data from the text file you created
when you generated the data.

If the oscilloscope display, and the I and Q data plots differ, recheck your code. For detailed
information on programmatically creating and downloading waveform data, see “Creating
Waveform Data” on page 152 and “Downloading Waveform Data” on page 157. For information on
the waveform data requirements, see “Waveform Data Requirements” on page 132.

Chapter 4 165

Creating and Downloading Waveform Files
Using the Download Utilities

Using the Download Utilities

Agilent provides free download utilities to download waveform data into the signal generator. The
table in this section describes the capabilities of three such utilities.

For more information and to install the utilities, refer to the following URLs:
¢ Agilent Signal Studio Toolkit: www.agilent.com/find/signalstudio
This software provides a graphical interface for downloading files.
¢ Agilent IntuiLink for PSG/ESG Signal Generators: www.agilent.com/find/intuilink

This software places icons in the Microsoft Excel and Word toolbar. Use the icons to connect to
the signal generator and open a window for downloading files.

¢ PSG/ESG Download Assistant: www.agilent.com/find/downloadassistant

This software provides functions for the MATLAB environment to download waveform data.

Features Agilent Signal Agilent IntuiLink PSG/ESG
Studio Toolkit Download
Assistant
Downloads encrypted waveform files X
Downloads Signal Studio waveform files X2
Downloads complex MATLAB waveform data X
Downloads MATLAB files (.mat) X

Downloads unencrypted interleaved 16-bit I/Q files b

>

Interleaves and downloads earlier 14-bit E443xB I and Q files
b

Swaps bytes for little endian order X

Downloads user-created marker files

Performs scaling

Starts waveform play back

X | |
X | | e

Sends SCPI Commands and Queries

Builds a waveform sequence X X

a. Some Signal Studio products let you create and export waveform files to a PC. Signal Studio Toolkit downloads the exported
files.
b. ASCII or binary format.

Downloading E443xB Signal Generator Files

To download earlier E443xB model I and Q files, use the same SCPI commands as if downloading
files to an E443xB signal generator. The signal generator automatically converts the E443xB files to
the proper file format as described in “Waveform Structure” on page 139 and stores them in the
signal generator’s memory. This conversion process causes the signal generator to take more time to
download the earlier file format. To minimize the time to convert earlier E443xB files to the proper
file format, store E443xB file downloads to volatile memory, and then transfer them over to
non-volatile (NVWFM) memory.

166 Chapter 4

Creating and Downloading Waveform Files
Downloading E443xB Signal Generator Files

NOTE You cannot extract waveform data downloaded as E443xB files.

E443xB Data Format

The following diagram describes the data format for the E443xB waveform files. This file structure
can be compared with the new style file format shown in “Waveform Structure” on page 139. If you
create new waveform files for the signal generator, use the format shown in “Waveform Data
Requirements” on page 132.

E443xB ARB Data Format

Marker Data

- | 14 bits DAC Data

Volatile Memory Path

| File MSB Offset Binary LSB

ARBI /waveform name I 2 I 14 |

Q File

ARBQ /waveform name I 2 I 14 |
—>-|NIA|4— 14 bits DAC Data

Offset Binary
arb datg

Storage Locations for E443xB ARB files

Place waveforms in either volatile memory or non-volatile memory. The signal generator supports the
E443xB directory structure for waveform file downloads.

Volatile Memory Storage Locations

e [user/arbi/
e [user/arbqg/

Non-Volatile Memory Storage Locations

e [user/nvarbi/
e [user/nvar bg/

Loading files into the above directories (volatile or non-volatile memory) does not actually store them
in those directories. Instead, these directories function as “pipes” to the format translator. The signal
generator performs the following functions on the E443xB data:

¢ Converts the 14-bit I and Q data into 16-bit data (the format required by the signal generator).
Left shifts the data and appends two bits (zeros) before the least significant bit.

Chapter 4 167

Creating and Downloading Waveform Files
Downloading E443xB Signal Generator Files

E443xB 14-Bit Data

| data Q data
(. oy N - O
|11|10110110111001 0010100111011001

Marker bits 14 data bits Reserved bits 14 data bits

Left Shifts and Adds Zeros—Removes Marker and Reserved Bits
(16-Bit Data Format)

16-bit | data 16-bit Q data
' - N . - N
11 10110110111001&% %9 10100111011001%9
Marker bits removed Bits added Reserved bits removed Bits added

¢ C(Creates a maker file and places the marker information, bits 14 and 15 of the E443xB I data, into
the marker file for markers one and two. Markers three and four, within the new marker file, are
set to zero (off).

Places the | Marker Bits into the Signal Generator Marker File

0011

/l Marker 1 and 2 bits from the E443xB | data

Marker 3 and 4 bits

¢ Interleaves the 16-bit I and Q data creating one 1/Q file.

¢ Creates a file header with all parameters set to unspecified (factory default file header setting).

SCPI Commands

Use the following commands to download E443xB waveform files into the signal generator.

NOTE Before downloading waveform data into volatile memory, turn off the Dual ARB player by
pressing Mode > Dual ARB > ARB Off On until Off is highlighted or send the SCPI command
[SOURce] : RADI o: ARB[: STATe] CFF.

168 Chapter 4

Creating and Downloading Waveform Files
Programming Examples

Extraction Method/
Memory Type

Command Syntax Options

SCPI/
volatile memory

: MVEM DATA "ARBI : <fil e_name>", <|l waveform bl ock data>
. MMEM DATA "ARBQ <fil e_name>", <Q waveform dat a>

SCPI/
non-volatile memory

. MMEM DATA "NVARBI : <fil e_nanme>",
: MMEM DATA "NVARBQ <fil e_nanme>",

<|I waveform bl ock data>
<Q wavef orm bl ock dat a>

The variables <I wavef orm bl ock data> and <Q wavef orm bl ock dat a> represents data in the
E443xB file format. The string variable <fi | e_name> is the name of the I and Q data file. After
downloading the data, the signal generator associates a file header and marker file with the 1/Q data
file.

Programming Examples

The programming examples use GPIB or LAN interfaces and are written in the following languages:

C++
MATLAB
Visual Basic
HP Basic

See Chapter 1 of this programming guide for information on interfaces and I/O libraries.

The example programs are also available on the signal generator Documentation CD-ROM, which
allows you to cut and paste the examples into an editor.

C++ Programming Examples

This section contains the following programming examples:

“Creating and Storing Offset I/Q Data—Big and Little Endian Order” on page 170

“Creating and Storing I/Q Data—Little Endian Order” on page 174

“Creating and Downloading I/Q Data—Big and Little Endian Order” on page 176

“Importing and Downloading I/Q Data—Big Endian Order” on page 180

“Importing and Downloading Using VISA—Big Endian Order” on page 183

“Importing, Byte Swapping, Interleaving, and Downloading I and Q Data—Big and Little Endian

Order” on page 187

Chapter 4

169

Creating and Downloading Waveform Files
Programming Examples

Creating and Storing Offset 1/Q Data—Big and Little Endian Order
On the documentation CD, this programming example’s name is “offset_iq_c++.tat.”

This C++ programming example (compiled using Microsoft Visual C++ 6.0) follows the same coding
algorithm as the MATLAB programming example “Creating and Storing I/Q Data” on page 194 and
performs the following functions:

¢ error checking

¢ data creation

¢ data normalization

* data scaling

¢ I/Q signal offset from the carrier (single sideband suppressed carrier signal)

* byte swapping and interleaving for little endian order data

e I and Q interleaving for big endian order data

¢ binary data file storing to a PC or workstation

* reversal of the data formatting process (byte swapping, interleaving, and normalizing the data)

After creating the binary file, you can use FTP, one of the download utilities, or one of the C++
download programming examples to download the file to the signal generator.

/1 This C++ exanple shows how to

/1 1.) Create a sinple | Q waveform

/1 2.) Save the waveforminto the ESG PSG Internal Arb format
1/ This format is the for the E4438C, E8267C, E8267D
I This format will not work with the ESG E443xB

/1 3.) Load the internal Arb format file into an array

#i ncl ude <stdio. h>
#i nclude <string. h>
#i ncl ude <math. h>

const int PO NTS = 1000; // Size of waveform
const char *conputer = “PCWN’;

int main(int argc, char* argv[])

{

I1 1.) Create Simple | Q Signal * s st sonknsssssntn s ssnsnshsnasnssnss
/1 This signal is a single tone on the upper

/1 side of the carrier and is usually refered to as

/1 a Single Side Band Suppressed Carrier (SSBSC) signal.

/1 1t is nothing nore than a cosine waveformin |

/1 and a sine waveformin Q

int points = PONTS; // Nunber of points in the waveform
int cycles = 101; // Determines the frequency offset fromthe carrier

170 Chapter 4

Creating and Downloading Waveform Files
Programming Examples

doubl e Iwave[PONTS]; // | waveform

doubl e Qunave[PO NTS]; // Q waveform

short int waveforn{2*PO NTS]; // Holds interleaved I/Q data
doubl e maxAmp = 0; // Used to Normalize waveform data
double minAmp = 0; // Used to Normalize waveform data

doubl e scale = 1;

char buf; // Used for byte swapping

char *pChar; // Used for byte swapping

bool PC = true; // Set flag as appropriate

doubl e phaselnc = 2.0 * 3.141592654 * cycles / points;
doubl e phase = 0;

int i =0;
for(i=0; i<points; i++)
{
phase = i * phaselnc;
Iwave[i] = cos(phase);
Qrvave[i] = sin(phase);
}
/1 2.) Save wavefOr Min iNternal fOrmAt ***** % xkskskssssssssksksknsxtsnss
/1 Convert the | and Qdata into the internal arb format
/1 The internal arb format is a single waveform containing interleaved |Q
I/ data. The I/Q data is signed short integers (16 bits).
/1 The data has val ues scal ed between +-32767 where
11 DAC Val ue Descri ption
I 32767 Maxi mum positive val ue of the DAC
11 0 Zero out of the DAC
11 - 32767 Maxi mum negative val ue of the DAC
/1 The internal arb expects the data bytes to be in Big Endian fornmat.
/1 This is opposite of how short integers are saved on a PC (Little Endian).
/1 For this reason the data bytes are swapped before being saved.
/1 Find the Maxi num anplitude in | and Q to normalize the data between +-1
maxAnmp = | wave[0] ;
m nAnmp = | wave[0] ;

for(i=0; i<points; i++)

{

f(maxAmp < lwave[i])
maxAnp = |wave[i];
else if(minAmp > Iwavel[i])

m nAnmp = | wave[i];

Chapter 4 171

Creating and Downloading Waveform Files
Programming Examples

if(maxAmp < Qnaveli])
maxAnmp = Qwave[i];
else if(mnAnp > Qurave[i])
m nAmp = Quave[i];
}
maxAmp = fabs(maxAnp);

m nAnmp = fabs(m nAnp);
if(mnAmp > maxAnp)
maxAnp = m nAnp;

/1 Convert to short integers and interleave |I/Q data

scal e = 32767 / maxAnp; /'l Watch out for divide by zero.

for(i=0; i<points; i++)

{

waveforni2*i] = (short)floor(lwave[i]*scale + 0.5);
waveforn 2*i +1] = (short)floor(Qnave[i]*scale + 0.5);

}

/1 1f on a PC swap the bytes to Big Endian
if(strcnp(conputer,”PCWN’) == 0)

I1if(PC)
{
pChar = (char *)&waveforniO];
for(i=0; i<2*points; i++)
{
buf = *pChar;
*pChar = *(pChar+1);
*(pChar +1) = buf;
pChar += 2;

}

// Save the data to a file

/| Character pointer to short

int data

/1l Use FTP or one of the downl oad assistants to download the file to the

/1 signal generator

char *filename = “C:\\Tenp\\ PsgTestFile";

FI LE *stream = NULL;

stream = fopen(filename, “wtb”);// Open the file
if (streamr=NULL) perror (“Cannot Open File");

int numwitten = fwite((void *)waveform sizeof(short),

fclose(stream;// Close the file

1/ 3) Load the internal Arb format file ****x*kkkkkkhkkhkkhkkhkkhhkkkkkkkkk*x

/1 This process is just the reverse of saving the waveform

poi nts*2,

stream);

172

Chapter 4

Creating and Downloading Waveform Files
Programming Examples

/1 Read in waveform as unsigned short integers.

/'l Swap the bytes as necessary

/1 Normalize between +-1

/1 De-interleave the I/Q Data

I/ Open the file and load the internal format data
stream = fopen(filename, “r+b”);// Open the file
if (streamr=NULL) perror (“Cannot Open File");

int nuntread = fread((void *)waveform sizeof(short), points*2, stream);
fclose(strean);// Close the file

/1 1f on a PC swap the bytes back to Little Endian
if(strcnp(conputer,”PCWN’) == 0)

{
pChar = (char *)&waveforni0]; /1 Character pointer to short int data
for(i=0; i<2*points; i++)
{
buf = *pChar;
*pChar = *(pChar+1);
*(pChar +1) = buf;
pChar += 2;
}
}

/1 Normalize De-Interleave the I Q data
doubl e I wavel n[PO NTS] ;

doubl e Qnavel n[PO NTS] ;

for(i=0; i<points; i++)

{
Iwavel n[i] = waveforn{2*i] / 32767.0;
Quavel n[i] = waveforn{2*i+1] / 32767.0;
}
return O;

Chapter 4 173

Creating and Downloading Waveform Files
Programming Examples

Creating and Storing 1/Q Data—Little Endian Order
On the documentation CD, this programming example’s name is “CreateStore_Data_c++.txt.”

This C++ programming example (compiled using Metrowerks CodeWarrior 3.0) performs the following
functions:

¢ error checking

¢ data creation

* byte swapping and interleaving for little endian order data
* binary data file storing to a PC or workstation

After creating the binary file, you can use FTP, one of the download utilities, or one of the C++
download programming examples to download the file to the signal generator.

#i nclude <iostrean»
#i nclude <fstreanr
#i ncl ude <nat h. h>
#i nclude <stdlib. h>

usi ng nanespace std;

int min (void)

{
of stream out _stream // wite the I/Qdata to a file
const unsigned int SAMPLES =200; /1 nunber of sanple pairs in the waveform
const short AMPLI TUDE = 32000; /1 anplitude between 0 and full scal e dac val ue

const double two_pi = 6.2831853;

/lallocate buffer for waveform
short* igData = new short[2*SAMPLES];// need two bytes for each integer

if (!iqgData)

{
cout << "Could not allocate data buffer."” << endl;
return 1;

}

out_streamopen("lQdata");// create a data file
if (out_streamfail())
{
cout << "Input file opening failed" << endl;
exit(1);
}
//generate the sanple data for | and Q The | channel will have a sine
//wave and the Q channel will a cosine wave.

174 Chapter 4

Creating and Downloading Waveform Files
Programming Examples

for (int i=0; i<SAWPLES; ++i)
{

iqData[2*i] = AWPLI TUDE * sin(two_pi*i/(float)SAWMPLES);

i qDat a[2*i +1] = AWMPLI TUDE * cos(two_pi *i/(fl oat) SAMPLES);
}

/1 make sure bytes are in the order MSB(nost significant byte) first. (PC only).

char* cptr = (char*)iqData;// cast the integer values to characters

for (int i=0; i<(4*SANPLES); i+=2)// 4*SAMPLES

{
char tenp = cptr[i];// swap LSB and MSB bytes
cptri]=cptr[i+1];
cptr[i+1] =t enp;

}

/Il nowwite the buffer to a file

out _streamwite((char*)iqbData, 4*SAWPLES);
return O;

Chapter 4 175

Creating and Downloading Waveform Files
Programming Examples

Creating and Downloading 1/Q Data—Big and Little Endian Order

On the documentation CD, this programming example’s name is “CreateDwnLd_Data_c++.tat.”

This C++ programming example (compiled using Microsoft Visual C++ 6.0) performs the following

functions:

¢ error checking

¢ data creation

e data scaling

* text file creation for viewing and debugging data

* byte swapping and interleaving for little endian order data

¢ interleaving for big endian order data
¢ data saving to an array (data block)
* data block download to the signal generator

/'l This C++ programis an exanple of creating and scaling
/1 1 and Q data, and then downl oading the data into the
/'l signal generator as an interleaved I/Qfile.

/1 This exanpl e uses a sine and cosine wave as the 1/Q
/1 data.

/1

/1 Include the standard headers for SICL progranm ng

#i nclude <sicl.h>

#include <stdlib. h>

#i ncl ude <stdio. h>

#i nclude <string. h>

#i ncl ude <math. h>

/| Choose a GPI B, LAN, or RS-232 connection
char* instQpenString ="1an[gal gabhcpl]”;

//char* instQpenString ="gpi b0, 197;

/1 Pick some maxi mum nunber of sanples, based on the

/1 anmount of menory in your conputer and the signal generator.

const int NUMSAMPLES=500;

int main(int argc, char* argv[])

{
/Il Create a text file to view the waveform
/'l prior to downloading it to the signal generator.
/1 This verifies that the data | ooks correct.
char *ofile = “c:\\temp\\iqg.txt";
176

Chapter 4

Creating and Downloading Waveform Files
Programming Examples

// Create arrays to hold the I and Q data

int idata[NUMSAMPLES] ;
int gdat a[NUMSAMPLES] ;

/1l save the nunmber of sanpes into nunmsanpl es
int nunsanpl es = NUMSAMPLES;

/1 Fill the | and Q buffers with the sanple data

for(int index=0; index<nunsanples; index++)

{
/!l Create the | and Q data for the nurmber of waveform
/1 points and Scal e the data (20000 * ...) as a precentage
/1 of the DAC full scale (-32768 to 32767). This exanple
/|l scales to approxi mately 70% of full scale.
i dat a[i ndex] =23000 * si n((4*3. 14*i ndex)/nunmsanpl es);
gdat a[i ndex] =23000 * cos((4*3.14*i ndex)/ nunsanpl es);

/1 Print the | and Qvalues to a text file. View the data
/Il to see if its correct and if needed, plot the data in a
/|l spreadsheet to hel p spot any problens.

FILE *outfile = fopen(ofile, “wW);

if (outfile==NULL) perror (“Error opening file to wite");
for (i ndex=0; index<numsanpl es; index++)
{

fprintf(outfile, “%, %\ n”, idata[index], qdata[index]);
}

fclose(outfile);

/1 Little endian order data, use the character array and for |oop.
/1 1f big endian order, comment out this character array and for |oop,
// and use the next |loop (Big Endian order data).

/1 W need a buffer to interleave the | and Q data.
I/l 4 bytes to account for 2 | bytes and 2 Q bytes.

char i gbuff er [NUVSAMPLES* 4] ;

/Il Interleave | and Q and swap bytes fromlittle
/1 endian order to big endian order.
for(index=0; index<nunsanples; index++)

{

Chapter 4 177

Creating and Downloading Waveform Files
Programming Examples

int ivalue = idata[index];
int gvalue = qdata[index];

i gbuf fer[index*4] = (ivalue >> 8) & OxFF; // high byte of i
i gbuf fer[index*4+1] = ivalue & OxFF; /1 low byte of i

i gbuf fer[index*4+2] = (qvalue >> 8) & OxFF; // high byte of g
i gbuf fer[index*4+3] = qval ue & OxFF; /1 1ow byte of q

/1 Big Endian order data, uncoment the follow ng |ines of code.

/1 Interleave the I and Q data.

/1 short iqbuffer[NUMSAMPLES* 2] ; /1 Big endian order, uncomment this
/1 for(index=0; index<nunmsanples; index++) // Big endian order, uncoment this
I { /1 Big endian order, uncomment this
11 i gbuf fer[i ndex*2] = idata[index]; // Big endian order, uncomment this
11 i gbuf fer[index*2+1] = qdata[index]; // Big endian order, uncomment this
11} /1 Big endian order, uncomment this

// Open a connection to wite to the instrunent

I NST i d=i open(i nst QpenString);

if (lid)

{
fprintf(stderr, “iopen failed (%)\n”, instOpenString);
return -1;

I/ Declare variables to hold portions of the SCPI command
int bytesToSend;

char s[20];

char cnd[200] ;

byt esToSend = nunsanpl es*4; I/ calculate the nunmber of bytes
sprintf(s, “%l", bytesToSend); // create a string s with that nunber of bytes

/1 The SCPI command has four parts.
11 Part 1 = : MEM DATA “fil ename”, #

11 Part 2 = length of Part 3 when witten to a string
11 Part 3 = length of the data in bytes. This is in s from above.
/1 Part 4 = the buffer of data

// Build parts 1, 2, and 3 for the |I and Q data.
sprintf(cnd, “:MEM DATA \"WFML: FI LE1I\", #%%l”, strlen(s), bytesToSend);

line
line
line
line
line
line

178

Chapter 4

Creating and Downloading Waveform Files
Programming Examples

// Send parts 1, 2, and 3

iwite(id, cnd, strlen(cnd), 0, 0);

// Send part 4. Be careful to use the correct conmand here. In many

/1 programm ng | anguages, there are two nmethods to send SCPl conmands:
11 Method 1 = stop at the first ‘0’ in the data

11 Method 2 = send a fixed nunber of bytes, ignoring ‘0" in the data.
/1 You nust find and use the correct command for Method 2.

iwite(id, iqbuffer, bytesToSend, 0, 0);

// Send a termnating carriage return

iwite(id, “\n", 1, 1, 0);

printf(“Loaded file using the E4438C, E8267C and E8267D format\n");

return O;

Chapter 4 179

Creating and Downloading Waveform Files
Programming Examples

Importing and Downloading I/Q Data—Big Endian Order
On the documentation CD, this programming example’s name is “impDwnLd_c++.txt.”

This C++ programming example (compiled using Metrowerks CodeWarrier 3.0) assumes that the data
is in big endian order and performs the following functions:

¢ error checking
* binary file importing from the PC or workstation.
¢ binary file download to the signal generator.

/1 Description: Send a file in blocks of data to a signal generator
11

#i ncl ude <sicl.h>

#i nclude <stdlib. h>

#i ncl ude <stdio. h>

#i nclude <string. h>

/1 ATTENTI ON:
/1 - Configure these three lines appropriately for your instrunent
11 and use before conpiling and running

11
char* instQpenString = "gpib7,19"; //for LAN replace with “lan[<hostnane or |P address>]"
const char* local SrcFile = "D:\\home\\ TEST_WAVE"; //enter file | ocation on PC workstation

const char* instDestFile = "/USER BBGl/ WAVEFORM TEST_WAVE"; //for non-volatile nmenory
//renove BBGL fromfile path

/1 Size of the copy buffer
const int BUFFER_SI ZE = 100*1024;

int

mai n()

{
I NST i d=i open(i nst QpenString);
if (lid)
{

fprintf(stderr, "iopen failed (%)\n", instOpenString);
return -1;

FILE* file = fopen(local SrcFile, "rb");

if (Mfile)

{
fprintf(stderr, "Could not open file: %\n", local SrcFile);
return O;

180 Chapter 4

Creating and Downloading Waveform Files
Programming Examples

if(fseek(file, 0, SEEK END) < 0)

{
fprintf(stderr,"Cannot seek to the end of file.\n");
return O;

long lenToSend = ftell (file);
printf("File size = %\n", |enToSend);

if (fseek(file, 0, SEEK_SET) < 0)

{
fprintf(stderr,"Cannot seek to the start of file.\n");
return O;

char* buf = new char [BUFFER_SI ZE] ;
if (buf && | enToSend)
{
/'l Prepare and send the SCPI command header
char s[20];
sprintf(s, "%", |enToSend);
int lenLen = strlen(s);
char s2[256];
sprintf(s2, "memdata \"%\", #%l%", instDestFile, |enLen, |enToSend);
iwite(id, s2, strlen(s2), 0, 0);

/1 Send file in BUFFER_SI ZE chunks

| ong nunRead;

do

{
nunRead = fread(buf, sizeof(char), BUFFER SIZE, file);
iwite(id, buf, nunRead, 0, 0);

} while (nunRead == BUFFER _SI ZE);

/1 Send the terminating new ine and EOM
iwite(id, "\n", 1, 1, 0);

delete [] buf;
}

el se

{

Chapter 4 181

Creating and Downloading Waveform Files
Programming Examples

fprintf(stderr, "Could not allocate nmenory for copy buffer\n");

fclose(file);
iclose(id);
return O;

182

Chapter 4

Importing and Downloading Using VISA—Big Endian Order

Creating and Downloading Waveform Files
Programming Examples

On the documentation CD, this programming example’s name is “DownLoad_Visa_c++.txt.”

This C++ programming example (compiled using Microsoft Visual C++ 6.0) assumes that the data is in

big endian order and performs the following functions:

¢ error checking

¢ binary file importing from the PC or workstation

¢ binary file download to the signal generator’s non-volatile memory

To load the waveform data to volatile (WFM1) memory, change the i nst Destfi |l e declaration to:

“USER/ BBGLl/ WAVEFORM ”.

[] F kK Kk k ok ok ok ok ko ok ok ok kK ok kK Kk Kk ok ok k ok Rk ok k kK k ok ok k kK k ok ok k kR ko k ok ok k kK k kK k ok Rk kR k ok k ok ok k ok ok k ok ok k ok ok ok kK

/1 PROGRAM NAME: Downl oad_Vi sa_c++. cpp

Il

/1 PROGRAM DESCRI PTI ON: Sanpl e test programto downl oad ARB waveform data. Send a

/1 file in chunks of ascii

Il

/1 NOTE: You nust have the Agilent

I

data to the signal

1O Libraries installed to run this program

/1 This exanple uses the LANTCPIP to downl oad a file to the baseband generator's

/1 non-volatile nenory. The program all ocates a nmenory buffer on the PC or

/1 workstation of 102400 bytes (100*1024 bytes).
/1 limted by the nenory on your PC or workstation,

/1 increased or decreased to nmeet your systemlimtations.

11

so the buffer

size of the buffer is
size can be

/1 VWile this programuses the LAN TCPIP to downl oad a waveformfile into

/1 non-volatile nmenory,

it can be nodified to store files in volatile nenory

/1 WFML using GPIB by setting the instrQpenString = "TCPl PO: : XXX. XXX. XXX. XXX: : | NSTR'

/1 declaration with

I

"GPl B::19: : I NSTR'

/1 The program al so includes some error checking to alert you when problens arise

/1 while trying to downl oad files.

This includes checking to see if the file exists.

[R KKKk ok k ok ok ok kkk ok k ok ok kkkk ok kk ok Kk Kk kkkkkkkkkkkkkkkhhkkhkkkkhkkkkhhkhkkkkkkkkkkkkkkk kK ok

/1 1 MPORTANT: Repl ace the xxx.xxx.xxx.xxx |P address in the instOpenString declaration

/1 in the code below with the I P address of your signal

/1 instrunent's hostnane).

/1 as needed.

(or you can use the
Repl ace the local SrcFile and instDestFile directory paths

[R KRk ok k ok ok ok kkk ok kkkkkkk ok kk ok Kk Kk kkkkkkkhkkkkkkkkkkkhkkkkhkkkkhkkhhkkhkkkkhkkkkkk kK ok

#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude

<stdlib. h>

<stdi 0. h>

<string. h>
"visa.h"

Chapter 4

183

Creating and Downloading Waveform Files

Programming Examples

Il
11
11

char* instQpenString ="TCPI PO: : XXX. XXX. XXX. XXX: : | NSTR";

| MPORTANT:
Configure the following three lines correctly before conpiling and running

const char* local SrcFile = "\\Files\\IQ DataC';

const char* instDestFile = "/ USER WAVEFORM | Q Dat aC';

const

i nt BUFFER_SI ZE = 100*1024;// Size of the copy buffer

/1 your instrunent's |P address

int main(int argc, char* argv[])
{
Vi Session defaul tRM vi;
Vi Status status = 0;
status = vi OpenDef aul t RM &defaul tRM;// Open the default resource nanager
// TO DO Error handling here
status = vi Open(defaul tRM instOpenString, VI_NULL, VI_NULL, &vi);
if (status)// If any errors then display the error and exit the program
{
fprintf(stderr, "viOpen failed (%)\n", instOpenString);
return -1;
}
FILE* file = fopen(local SrcFile, "rb");// Open local source file for binary reading
if (!file) // If any errors display the error and exit the program
{
fprintf(stderr, "Could not open file: %\n", local SrcFile);
return O;
}
if(fseek(file, 0, SEEK END) < 0)
{
fprintf(stderr,"Cannot |seek to the end of file.\n");
return O;
}
184 Chapter 4

Il
Il

Creating and Downloading Waveform Files
Programming Examples

long lenToSend = ftell(file);// Nunber of bytes in the file
printf("File size = %\n", |enToSend);
if (fseek(file, 0, SEEK_SET) < 0)
{
fprintf(stderr,"Cannot |seek to the start of file.\n");
return O;
unsi gned char* buf = new unsigned char[BUFFER SI ZE]; // Allocate char buffer nmenory
if (buf && | enToSend)
{
/1 Do not send the EO (end of instruction) termnator on any wite except the
/1l last one
vi Set Attribute(vi, VI_ATTR_SEND END EN, 0);

/'l Prepare and send the SCPI command header

char s[20];
sprintf(s, "%", |enToSend);

int lenLen = strlen(s);
unsi gned char s2[256];

Wite the command mmem data and the header. The nunber |enLen represents the
number of bytes and the actual nunber of bytes is the variable | enToSend

sprintf((char*)s2, "memdata \"%\", #%%", instDestFile, |enLen, |enToSend);

Send the command and header to the signal generator

viWite(vi, s2, strlen((char*)s2), 0);

| ong nunRead;

Send file in BUFFER SI ZE chunks to the signal generator

do

Chapter 4 185

Creating and Downloading Waveform Files
Programming Examples

nunmRead = fread(buf, sizeof(char), BUFFER SIZE, file);

viWite(vi, buf, nunRead, 0);

} while (nunRead == BUFFER_SI ZE);

/1 Send the terminating new ine and EO

viSetAttribute(vi, VI_ATTR SEND END EN, 1);

char* newLine = "\n";

viWite(vi, (unsigned char*)new.ine, 1, 0);

del ete [] buf;

}

el se

{

fprintf(stderr, "Could not allocate nmenory for copy buffer\n");

fclose(file);
vi Cl ose(vi);
vi Cl ose(defaul tRM;

return O;

186 Chapter 4

Creating and Downloading Waveform Files
Programming Examples

Importing, Byte Swapping, Interleaving, and Downloading | and Q Data—Big and Little Endian Order

On the documentation CD, this programming example’s name is “impDwnLd2_c++.txt.”

This C++ programming example (compiled using Microsoft Visual C++ 6.0) performs the following

functions:

¢ error checking

¢ Dbinary file importing (earlier E443xB or current model signal generators)

¢ byte swapping and interleaving for little endian order data

* data interleaving for big endian order data
* data scaling

¢ binary file download for earlier E443xB data or current signal generator formatted data

/1 This C++ programis an exanple of loading | and Q

/1 data into an E443xB, E4438C, E8267C, or E8267D si gnal
/1 generator.

11

/1 1t reads the | and Q data froma binary data file

/1 and then wites the data to the instrument.

/1 1nclude the standard headers for SICL progranm ng
#i ncl ude <sicl.h>

#i nclude <stdlib. h>

#i nclude <stdio. h>

#i nclude <string. h>

// Choose a GPIB, LAN, or RS-232 connection
char* instQpenString ="gpi b0, 19”;

/1 Pick sonme maxi num nunber of sanples, based on the
/1 anount of nenory in your conputer and your wavef ormns.
const int MAXSAMPLES=50000;

int main(int argc, char* argv[])

/1 These are the I and Qinput files.

/1 Sonme conpilers will allow /' in the directory

/1 nanes. O der conpilers mght need ‘\\' in the

/1 directory nanes. It depends on your operating system
/1 and conpiler.

char *ifile = “c:\\Signal Generator\\data\\BurstAll.bin";
char *qgfile = “c:\\Signal Generator\\data\\Burst A1Q bi n";

Chapter 4

187

Creating and Downloading Waveform Files
Programming Examples

/1 This is a text file to which we will wite the
/1 1 and Q data just for debugging purposes. It is
/1 a good progranming practice to check your data
/1 in this way before attenpting to wite it to

/1 the instrument.

char *ofile = “c:\\Signal Generator\\data\\iqg.txt";

// Create arrays to hold the I and Q data
int idata[MAXSAMPLES] ;
i nt gdat a MAXSAMPLES] ;

/1 Often we nust nodify, scale, or offset the data
I/ before loading it into the instrument. These
/1l buffers are used for that purpose. Since each
Il sanple is 16 bits, and a character only hol ds
/1 8 bits, we nmust make these arrays twice as |ong
// as the | and Q data arrays.

char i buffer[MAXSAMPLES* 2] ;

char gbuf f er [MAXSAMPLES* 2] ;

/1l For the E4438C or E8267C/ 67D, we might also need to interleave

/!l the | and Q data. This buffer is used for that
/1l purpose. In this case, this buffer nust hold
/1 both | and Q data so it needs to be four tines
// as big as the data arrays.

char i gbuf f er [MAXSAMPLES* 4] ;

/1 Declare variables which will be used |ater
bool done;
FILE *infile;

int index, nunsanples, i1, i2, ivalue;

/1 In this exanple, we'll assume the data files have

/Il the | and Qdata in binary formas unsigned 16 bit integers.
/1 This next block reads those binary files. [If your

// data is in sone other format, then replace this block

/1 with appropriate code for reading your format.

/1l First read | values

done = fal se;

index = 0;

infile = fopen(ifile, “rb”);

if (infile==NULL) perror (“Error opening file to read”);

188

Chapter 4

whi | e(! done)

{
il =fgetc(infile); // read the first byte
i f(i1==EOF) break;
i2 = fgetc(infile); // read the next byte
i f(i2==EOF) break;
i val ue=i 1+i 2*256; /1 put the two bytes together
/1 note that the above format is for a little endian
/'l processor such as Intel. Reverse the order for
/1 a big endian processor such as Mdtorola, HP, or Sun
i dat a[i ndex++] =i val ue;
i f (i ndex==MAXSAMPLES) br eak;

}

fclose(infile);

/1 Then read Q val ues
index = 0;
infile = fopen(qgfile, “rb”);
if (infile==NULL) perror (“Error opening file to read");
whi | e(! done)
{
il =fgetc(infile); // read the first byte
i f(i1==EOF) break;
i2 = fgetc(infile); // read the next byte
i f(i2==EOF) break;
i val ue=i 1+i 2*256; /1 put the two bytes together
/1 note that the above format is for a little endian
/'l processor such as Intel. Reverse the order for
/1 a big endian processor such as Mdtorola, HP, or Sun
gdat a[i ndex++] =i val ue;
i f (i ndex==MAXSAMPLES) br eak;
}

fclose(infile);

/1 Renmenber the nunber of sanples which were read fromthe file.

nunsanpl es = i ndex;

/1l Print the | and Qvalues to a text file. If you are
/1 having trouble, look in the file and see if your | and
/1 Qdata | ooks correct. Plot the data fromthis file if
/1 that hel ps you to diagnose the problem

FILE *outfile = fopen(ofile, “wW);

Creating and Downloading Waveform Files
Programming Examples

Chapter 4

189

Creating and Downloading Waveform Files
Programming Examples

if (outfile==NULL) perror (“Error opening file to wite");
for (i ndex=0; index<numsanples; index++)
{

fprintf(outfile, “%, %l\n”, idata[index], qdata[index]);
}

fclose(outfile);

/1 The E443xB, E4438C, E8267C or E8267D all use big-endian
Il processors. |f your software is running on a little-endian
/'l processor such as Intel, then you will need to swap the
Il bytes in the data before sending it to the signal generator.

/1 The arrays ibuffer and gbuffer are used to hold the data
/1l after any byte swapping, shifting or scaling.

/1 In this exanple, we'll assume that the data is in the fornmat
/1 of the E443xB without markers. |In other words, the data

/1l is in the range 0-16383.

/1 0 gives negative full-scal e out put

/1 8192 gives 0 V output

/1 16383 gives positive full-scale output

/1 1f this is not the scaling of your data, then you will need
Il to scale your data appropriately in the next two bl ocks.

/1l ibuffer and gbuffer will hold the data in the E443xB format.
/1 No scaling is needed, however we need to swap the byte order
/1 on alittle endian conputer. Renpbve the byte swapping

/1 if you are using a big endian conmputer.

for (i ndex=0; index<numsanples; index++)

{
int ivalue = idata[index];
int gvalue = qdata[index];
i buf fer[index*2] = (ivalue >> 8) & OxFF; // high byte of i
i buf fer[index*2+1] = ivalue & OxFF; /1 low byte of i
gbuf f er[i ndex*2] = (qvalue >> 8) & OxFF; // high byte of g
gbuf fer[i ndex*2+1] = qval ue & OxFF; /1 low byte of q
}

/1l iqbuffer will hold the data in the E4438C, E8267C, E8267D

/1 format. In this format, the | and Q data is interleaved.
// The data is in the range -32768 to 32767.
11 - 32768 gives negative full-scal e output

190 Chapter 4

Creating and Downloading Waveform Files
Programming Examples

11 0 gives 0 V output

11 32767 gives positive full-scal e output

/!l Fromthese ranges, it appears you shoul d offset the

I/ data by 8192 and scale it by 4. However, due to the
I/ interpolators in these products, it is better to scale
// the data by a number |ess than four. Commonly a good
Il choice is 70% of 4 which is 2.8.

/1 By default, the signal generator scales data to 70%
/1 1f you scale the data here, you may want to change the
/1l signal generator scaling to 100%

/1 Also we need to swap the byte order on a little endian
I/ conputer. This code also works for big endian order data
Il since it swaps bytes based on the order.

for (i ndex=0; index<numsanples; index++)

{
int iscaled = 2.8*(idata[index]-8192); // shift and scale
int gscaled = 2.8*(qdata[index]-8192); // shift and scale
i gbuf fer[index*4] = (iscaled >> 8) & OxFF; // high byte of i
i gbuf fer[index*4+1] = iscal ed & OxFF; /1 low byte of i
i gbuf fer[index*4+2] = (qgscaled >> 8) & OxFF; // high byte of g
i gbuf fer[index*4+3] = gscal ed & OxFF; // |ow byte of q

}

// Open a connection to wite to the instrunent

I NST i d=i open(i nst OpenString);

if (lid)

{
fprintf(stderr, “iopen failed (%)\n", instOpenString);
return -1;

/1 Declare variables which will be used |ater
int bytesToSend;

char s[20];

char cnd[200] ;

/1 The E4438C, E8267C and E8267D accept the E443xB format.
/1 so we can use this next section on any of these signal generators.
/1 However the E443xB format only uses 14 bits.

byt esToSend = nunsanpl es*2; /'l calculate the nunmber of bytes
sprintf(s, “%l", bytesToSend); // create a string s with that nunber of bytes

Chapter 4 191

Creating and Downloading Waveform Files
Programming Examples

/1 The SCPI command has four parts.
/1 Part 1 = : MEM DATA “fil ename”,

11 Part 2 = length of Part 3 when witten to a string
11 Part 3 = length of the data in bytes. This is in s from above.
11 Part 4 = the buffer of data

// Build parts 1, 2, and 3 for the | data.

sprintf(cnd, “:MEM DATA \"ARBI: FILE1\", #%%", strlen(s), bytesToSend);
// Send parts 1, 2, and 3

iwite(id, cnd, strlen(cnd), 0, 0);

I/ Send part 4. Be careful to use the correct conmand here. |In many
/1l programm ng | anguages, there are two nmethods to send SCPl conmands:
11 Method 1 = stop at the first ‘0’ in the data

11 Method 2 = send a fixed nunber of bytes, ignoring ‘0" in the data.
/1 You nust find and use the correct command for Method 2.

iwite(id, ibuffer, bytesToSend, 0, 0);

// Send a termnating carriage return

iwite(id, “\n", 1, 1, 0);

/1 ldentical to the section above, except for the Q data.

sprintf(cnd, “:MEM DATA \"ARBQ FI LE1\", #%d%l”, strlen(s), bytesToSend);
iwite(id, cnd, strlen(cnd), 0, 0);

iwite(id, gbuffer, bytesToSend, 0, 0);

iwite(id, “\n", 1, 1, 0);

printf(“Loaded FILEl using the E443xB format\n");
/1 The E4438C, EB8267C and E8267D have a newer faster format which

// allows 16 bits to be used. However this format is not accepted in
/1l the E443xB. Therefore do not use this next section for the E443xB.

printf(“Note: Loading FILE2 on a E443xB will cause \"ERROR 208, I/Oerror\”\n");

/1 ldentical to the | and Q sections above except

11 a) The | and Q data are interleaved

11 b) The buffer of 1+Qis twice as long as the | buffer was.

11 c) The SCPI conmand uses WFML instead of ARBI and ARBQ

byt esToSend = nunsanpl es*4;

sprintf(s, “%", bytesToSend);

sprintf(cnd, “:nmemdata \"WML: FILE2\", #%d%l”, strlen(s), bytesToSend);
iwite(id, cnd, strlen(cnd), 0, 0);

192

Chapter 4

Creating and Downloading Waveform Files
Programming Examples

iwite(id, iqbuffer, bytesToSend, 0, 0);

iwite(id, “\n”, 1, 1, 0);

printf(“Loaded FILE2 using the E4438C, E8267C and E8267D format\n");
return O;

Chapter 4 193

Creating and Downloading Waveform Files
Programming Examples

MATLAB Programming Examples

This section contains the following programming examples:
¢ “Creating and Storing I/Q Data” on page 194

¢ “Creating and Downloading a Pulse” on page 197

Creating and Storing 1/Q Data
On the documentation CD, this programming example’s name is “offset_iq_ml.m.”

This MATLAB programming example follows the same coding algorithm as the C++ programming
example “Creating and Storing Offset I/Q Data—Big and Little Endian Order” on page 170 and
performs the following functions:

¢ error checking

¢ data creation

¢ data normalization

¢ data scaling

¢ I/Q signal offset from the carrier (single sideband suppressed carrier signal)

* byte swapping and interleaving for little endian order data

e I and Q interleaving for big endian order data

* binary data file storing to a PC or workstation

* reversal of the data formatting process (byte swapping, interleaving, and normalizing the data)

function main

% Usi ng MatLab this exanpl e shows how to

%1.) Create a sinple | Q waveform

% 2.) Save the waveforminto the ESG PSG Internal Arb format
% This format is for the E4438C, E8267C, and E8267D

% This format will not work with the earlier E443xB ESG
% 3.) Load the internal Arb format file into a MatLab array

% 1.) Create Sinple | Q Signal ***#*kssssxsskskskssssnsnsnakssssnsntsss
% This signal is a single tone on the upper

% side of the carrier and is usually refered to as

% a Single Side Band Suppressed Carrier (SSBSC) signal.

%1t is nothing nore than a cosine waveformin |

% and a sine waveformin Q

%

poi nts = 1000; % Nunmber of points in the waveform

cycles = 101; % Det ermines the frequency offset fromthe carrier

phasel nc = 2*pi *cycl es/ poi nts;
phase = phaselnc * [O: points-1];

Iwave = cos(phase);

194 Chapter 4

Creating and Downloading Waveform Files
Programming Examples

Qnave = sin(phase);

% 2.) Save Wavef Orm in i NtErnal fOr At ***#* ks s kskxsxsxsksksknsnsxtsss
% Convert the | and Q data into the internal arb format

% The internal arb format is a single waveform containing interleaved |IQ
% data. The |/Q data is signed short integers (16 bits).

% The data has val ues scal ed between +-32767 where

% DAC Val ue Descri ption

% 32767 Maxi mum positive val ue of the DAC
% 0 Zero out of the DAC
% -32767 Maxi mum negati ve val ue of the DAC

% The internal arb expects the data bytes to be in Big Endian fornat.
% This is opposite of how short integers are saved on a PC (Little Endian).
% For this reason the data bytes are swapped before being saved.

% I nterl eave the | Q data

wavef orm(1: 2: 2*points) = |wave;
wavef orm(2: 2: 2*poi nts) = Qnave;
% | wave; Qnave] ;

owavef orm = waveforn(:)’;

% Normal i ze the data between +-1
waveform = waveform / nmax(abs(waveformn)); % Watch out for divide by zero.

% Scal e to use full range of the DAC

waveform = round(waveform * 32767); % Data is now effectively signed short integer val ues
% wavef orm = round(waveform* (32767 / max(abs(waveform))); % More efficient than previous two
st eps!

% PRESERVE THE BI T PATTERN but convert the waveformto

% unsi gned short integers so the bytes can be swapped.

% Note: Can’t swap the bytes of signed short integers in MatLab.
waveform = ui nt 16(nod(65536 + waveform 65536)); %

% I1f on a PC swap the bytes to Big Endian
if strcnp(conputer, ‘PCWN)

wavef orm = bitor(bitshift(waveform-8), bitshift(waveform8));
end

% Save the data to a file
% Note: The waveformis saved as unsigned short integers. However,
% the acual bit pattern is that of signed short integers and

Chapter 4 195

Creating and Downloading Waveform Files
Programming Examples

% that is how the ESG PSG interprets them
filename = ‘ C:\ Tenp\ PsgTestFile’;
[FID, nessage] = fopen(filenane,’w);% Open a file to wite data

if FID==-1 error(‘Cannot Open File'); end
fwrite(Fl D waveform ' unsigned short’);%wite to the file
fclose(FID); %close the file

%3.) Load the internal Arb fOFMAt file *******xtxskskakskssnssssnkssssss
% This process is just the reverse of saving the waveform

% Read in waveform as unsigned short integers.

% Swap the bytes as necessary

% Convert to signed integers then nornalize between +-1

% De-interleave the |/Q Data

% Open the file and load the internal format data

[FID, nessage] = fopen(filenane,'r’);% Open file to read data
if FID==-1 error(‘Cannot Open File'); end

[internal Wave,n] = fread(FID, ‘uintl6’);%read the I1Qfile
fclose(FID);%close the file

i nternal Wave = internal Wave’; % Conver fromcolumm array to row array

% I1f on a PC swap the bytes back to Little Endian
if strcnp(conputer, ‘PCWN) %Put the bytes into the correct order
i nternal Wave= bi tor(bitshift(internal Wave, -8), bitshift(bitand(internal Wave, 255),8));

end

% convert unsigned to signed representation

i nternal Wave = doubl e(i nt er nal Wave);

tmp = (internal Wave > 32767.0) * 65536;

igwave = (internal Wave - tnp) ./ 32767; % and normalize the data

% De-Interleave the | Q data
Iwavel n = i gWave(1:2:n);
Qnavel n = i g\Wave(2: 2:n);

196 Chapter 4

Creating and Downloading Waveform Files
Programming Examples

Creating and Downloading a Pulse

On

the documentation CD, this programming example’s name is “pulsepat.m.”

This MATLAB programming example performs the following functions:

I and Q data creation for 10 pulses

marker file creation

data scaling

downloading using PSG/ESG Download Assistant functions (see “Using the Download Utilities” on
page 166 for more information)

% Script file: pul sepat. m

%

% Pur pose:

%o

cal cul ate and downl oad an arbitrary waveformfile that sinmulates a

%i npl e antenna scan pul se pattern to the PSG vector signal generator.

%

% Define Variabl es:

%n -- counting variable (no units)

%t -- time (seconds)

%rise -- raised cosine pulse rise-tine definition (sanples)

%on -- pulse on-tine definition (sanples)

%fall -- raised cosine pulse fall-tine definition (sanples)

% i -- in-phase nodul ati on signal

% q -- quadrature nodul ation signal

n=4; % defines the nunber of points in the rise-time and fall-tine
t=-1:2/n:1-2/n; % nunber of points translated to time
rise=(1l+sin(t*pi/2))/2; % defines the pulse rise-tine shape
on=ones(1, 120); % defines the pulse on-tinme characteristics
fall =(1+sin(-t*pi/2))/2; % defines the pulse fall-tinme shape

of f =zer os(1, 896) ; % defines the pulse off-time characteristics

% arrange the i-sanples and scale the anplitude to sinulate an antenna scan
% pattern conprised of 10 pul ses

.707*[rise on fall off...

.9*[rise on fall off]]...
.8*[rise on fall off]]...

i

[

[1
[.7*[rise on fall off]
[.6*[rise on fall off]
[.5*[rise on fall off]
[.4*[rise on fall off]
[.3*[rise on fall off]
[.2*[rise on fall off]
[.1*[rise on fall off]

% set the g-sanples to all zeroes

q =

zeros(1, 10240);

Chapter 4 197

Creating and Downloading Waveform Files
Programming Examples

% define a conposite iqg matrix for downl oad to the PSG using the
% PSG ESG Downl oad Assi st ant
IQata = [i + (j * a)];

% define a marker matrix and activate a marker to indicate the beginning of the waveform
Markers = zeros(2,l ength(l Qata)); %fill marker array with zero, i.e no markers set
Markers(1,1) = 1; % set marker to first point of playback

% make a new connection to the PSG over the GPIB interface
io = agt_newconnection('gpib',0,19);

% verify that conmmunication with the PSG has been established
[status, status_description,query_result] = agt_query(io,'*idn?");
if (status < 0) return; end

% set the carrier frequency and power |evel on the PSG using the PSG Downl oad Assi stant
[status, status_description] = agt_sendcomrand(io, 'SOURce: FREQuency 20000000000');
[status, status_description] = agt_sendcomand(io, 'POMr 0');

% define the ARB sanple clock for playback
sanpcl k = 40000000;

% downl oad the igq waveformto the PSG baseband generator for playback

[status, status_description] = agt_waveforni oad(io, |QData, 'pulsepat', sanpclk, 'play',
'no_nornscal e, Markers);

% turn on RF output power
[status, status_description] = agt_sendcomand(io, 'OUTPut: STATe ON)

You can test your program by performing a simulated plot of the in-phase modulation signal in
Matlab (see Figure 4-1 on page 199). To do this, enter plot (i) at the Matlab command prompt.

198

Chapter 4

Figure 4-1

Creating and Downloading Waveform Files
Programming Examples

Simulated Plot of In-Phase Signal

08

0.7H

0.6 H

0.5H <

0.4 H

0.3H 1

0.2 4

0.1

H

0 2000 4000 6000 8000 10000 12000

The following additional Matlab M-file pulse programming examples are also available on the
Documentation CD- ROM:

barker.m

chirp.m

FM.m

nchirp.m

pulse.m

pulsedroop.m

This programming example calculates and downloads an arbitrary waveform file
that simulates a simple 7-bit barker RADAR signal to the PSG vector signal
generator.

This programming example calculates and downloads an arbitrary waveform file
that simulates a simple compressed pulse RADAR signal using linear FM chirp to
the PSG vector signal generator.

This programming example calculates and downloads an arbitrary waveform file
that simulates a single tone FM signal with a rate of 6 KHz, deviation of
=/- 14.3 KH, Bessel null of dev/rate=2.404 to the PSG vector signal generator.

This programming example calculates and downloads an arbitrary waveform file
that simulates a simple compressed pulse RADAR signal using non-linear FM
chirp to the PSG vector signal generator.

This programming example calculates and downloads an arbitrary waveform file
that simulates a simple pulse signal to the PSG vector signal generator.

This programming example calculates and downloads an arbitrary waveform file
that simulates a simple pulse signal with pulse droop to the PSG vector signal
generator.

Chapter 4

199

Creating and Downloading Waveform Files
Programming Examples

Visual Basic Programming Examples

Creating I/Q Data—Little Endian Order

On the documentation CD, this programming example’s name is “Create_IQData_vb.txt.”

This Visual Basic programming example, using Microsoft Visual Basic 6.0, uses little endian order

data, and performs the following functions:

¢ error checking

e I an Q integer array creation

e I an Q data interleaving

* byte swapping to convert to big endian order
* binary data file storing to a PC or workstation

Once the file is created, you can download the file to the signal generator using FTP (see “FTP

»
Procedures” on page 150).
IR R R R R S R R R R R R R R R R R R R R R R RS RS E R R R R R R R R R R ERERERREEREEREEEEEEEEEES]

' Program Nane: Create_| QData

Program Description: This programcreates a sine and cosine wave using 200 I/ Q data
' sanples. Each | and Qvalue is represented by a 2 byte integer. The sanple points are
cal cul ated, scal ed using the AWPLI TUDE constant of 32767, and then stored in an array
' naned iqg_data. The AWVPLI TUDE scaling allows for full range |/Q nodul ator DAC val ues.

' Data nust be in 2's conpl emant, MSB/LSB big-endian format. |f your PC uses LSB/ MSB
format, then the integer bytes nust be swapped. This program converts the integer
array values to hex data types and then swaps the byte positions before saving the

' data to the 1QDataVB file.

B R R R R R R R R R R R TR

Private Sub Create_l QData()
Di mindex As |nteger

Di m AMPLI TUDE As | nt eger
Dim pi As Doubl e
DimloByte As Byte
Dim hi Byte As Byte
DimloHex As String
Dim hi Hex As String
strSrc As String
nunPoi nts As | nteger
Fi | eHandl e As | nteger
data As Byte
ig_data() As Byte
strFilename As String

O 0 0 00 Q0

m
m
m
m
m
m

strFilename = "C:\ | Q Dat avB"

Const SAMPLES = 200 " Nunber of sanple PAIRS of | and Qintegers for the waveform

200

Chapter 4

Creating and Downloading Waveform Files
Programming Examples

AWPLI TUDE = 32767 ' Scale the anplitude for full range of the signal generators
" 1/ Q nodul at or DAC
pi = 3.141592

DimintlQData(0 To 2 * SAMPLES - 1) 'Array for | and Q integers: 400
ReDimiqg_data(0 To (4 * SAMPLES - 1)) 'Need MSB and LSB bytes for each integer value: 800

"Create an integer array of I/Qpairs

For index = 0 To (SAMPLES - 1)
intlQData(2 * index) = Clnt(AWMPLITUDE * Sin(2 * pi * index / SAWMPLES))
intlQData(2 * index + 1) = Clnt(AWMPLI TUDE * Cos(2 * pi * index / SAMPLES))
Next index

' Convert each integer value to a hex string and then wite into the ig_data byte array
' MSB, LSB ordered
For index = 0 To (2 * SAMPLES - 1)

strSrc = Hex(intlQData(index)) 'convert the integer to a hex val ue

If Len(strSrc) <> 4 Then
strSrc = String(4 - Len(strSrc), "0") & strSrc 'Convert to hex format i.e "800F
End | f "Pad with 0's if needed to get 4
‘characters i.e '0' to "0000"

hiHex = Md$(strSrc, 1, 2) "Get the first two hex val ues (MSB)
loHex = Md$(strSrc, 3, 2) "Get the next two hex val ues (LSB)
| oByte = CByte("&H" & | oHex) 'Convert to byte data type LSB
hi Byte = CByte("&H" & hiHex) 'Convert to byte data type MSB

ig_data(2 * index) = hiByte "MSB into first byte
ig_data(2 * index + 1) = |oByte 'LSB into second byte
Next index

"Now wite the data to the file

Fil eHandl e = FreeFile() "CGet a file nunber

nunPoi nts = UBound(iq_data) 'Get the number of bytes in the file

Open strFilenane For Binary Access Wite As #FileHandl e Len = nunPoints + 1

Chapter 4 201

Creating and Downloading Waveform Files
Programming Examples

On Error GoTo file_error

For index = 0 To (nunPoints)

data = i q_data(index)

Put #FileHandl e, index + 1, data 'Wite the I/Qdata to the file
Next index

C ose #FileHandl e
Call MsgBox("Data witten to file " & strFil enane, vbOKOnly, "Downl oad")
Exit Sub

file_error:
MsgBox Err. Description
O ose #Fil eHandl e

End Sub

Downloading 1/Q Data
On the documentation CD, this programming example’s name is “Download_File_vb.txt.”

This Visual Basic programming example, using Microsoft Visual Basic 6.0, downloads the file created
in “Creating I/Q Data—Little Endian Order” on page 200 into non-volatile memory using a LAN
connection. To use GPIB, replace the i nst QpenStri ng object declaration with “GPI B: : 19: : | NSTR".
To download the data into volatile memory, change the i nst Destfi | e declaration to

“USER/ BBGLl/ WAVEFORM ”.

NOTE The example program listed here uses the VISA COM I/O API, which includes the
W i t el EEEBI ock method. This method eliminates the need to format the download
command with arbitrary block information such as defining number of bytes and byte
numbers. Refer to “SCPI Command Line Structure” on page 147 for more information.

This program also includes some error checking to alert you when problems arise while trying to
download files. This includes checking to see if the file exists.

IR S R R R R R R R R R R R R R R S R R R SR R RS R RS RS E R SRR E R RS RS EEEEEREREREEEEESEESES
Program Nane: Downl oad_Fil e
.

Program Description: This programuses Mcrosoft Visual Basic 6.0 and the Agilent
' VISACOM|/O Library to download a waveformfile to the signal generator.

The program downl oads a file (the previously created ‘1QDatavB file) to the signal
generator. Refer to the Programming Guide for information on binary

data requirenments for file downl oads. The waveformdata '| Q DataVB' is

downl oaded to the signal generator's non-volatile menory(NVWM

' " | USER/ WAVEFORM | Q Dat aVB". For volatile menory(WML) downl oad to the

202 Chapter 4

Creating and Downloading Waveform Files
Programming Examples

' " | USER/ BBGl/ WAVEFORM | Q _Dat aVB" directory.

You nust reference the Agilent VISA COM Resource Manager and VISA COM 1.0 Type
Library in your Visual Basic project in the Project/References nenu.

' The VISA COM 1.0 Type Library, corresponds to VISACOMtlb and the Agil ent

' VI SA COM Resource Manager, corresponds to AgtRM DLL.

' The VISA COM 488.2 Formatted I/O 1.0, corresponds to the Basi cFormattedl O dl|

' Use a statement such as "DimlInstr As VisaConlib. Fornattedl 0488" to

create the formatted |/ O reference and use

' "Set Instr = New VisaConLib. Formattedl O488" to create the actual object.

B R R R R R R R R R TR E]

' | MPORTANT: Use the TCPI P address of your signal generator in the rm Open

declaraion. |If you are using the GPIB interface in your project use "GPIB::19::|NSTR'

in the rm Open declaration.

B R R R R R R TR

Private Sub Downl oad_Fil e()
' The followi ng four lines declare 10 objects and instantiate them
Dimrm As VisaConli b. Resour ceManager

Set rm = New Agil ent RM.i b. SRMO s

Di m Si gGen As Vi saConlib. For mat t edl 0488

Set SigGen = New Vi saConLib. Formattedl 0488

' NOTE: Use the | P address of your signal generator in the rm Open declaration
Set SigGen.|O = rm Qpen("TCPI PO: : 000. 000. 000. 000")

Di m data As Byte
Dimig_data() As Byte

Di m Fi | eHandl e As | nteger
Di m nunPoi nts As | nteger
Di mindex As I|nteger

Di m Header As String

Di m response As String
Di m hi Byte As String
Dim | oByte As String
Dim strFilenane As String

strFilename = "C:\1 Q. DataVB" ‘File Nanme and | ocation on PC

‘Data will be saved to the signal generator’s NVWM
‘| USER/ WAVEFORM | Q Dat aVB directory.

Fil eHandl e = FreeFile()

Chapter 4 203

Creating and Downloading Waveform Files
Programming Examples

On Error GoTo errorhandl er

Wth SigGen 'Set up the signal generator to accept a downl oad
.1 O Ti meout = 5000 ' Ti neout 50 seconds
.WiteString "*RST" ' Reset the signal generator.

End Wth

nunPoints = (FileLen(strFilenane)) 'Get nunmber of bytes in the file: 800 bytes

ReDimiqg_data(0 To nunPoints - 1) ‘Dinmension the ig_data array to the
"size of the 1Q DataVvB file: 800 bytes

Qpen strFilenane For Binary Access Read As #FileHandle 'Open the file for binary read
On Error GoTo file_error

For index = 0 To (nunPoints - 1) "Wite the 1QDataVB data to the iqg_data array
Get #FileHandl e, index + 1, data ' (index+1) is the record nunber
i g_data(index) = data
Next index
d ose #FileHandl e "Close the file

"Wite the command to the Header string. NOTE: syntax
Header = "MEM DATA ""/USER/ WAVEFORM | Q Dat avB"", "

"Now write the data to the signal generator's non-volatile nenory (NVWWFM

Si gGen. Wi t el EEEBl ock Header, iq_data

Si gGen. WiteString "*OPC?" "Wait for the operation to conplete

response = SigGen. ReadString ' Signal generator reponse to the OPC? query

Cal | MsgBox("Data downl oaded to the signal generator", vbOKOnly, "Download")

Exit Sub
errorhandl er:

MsgBox Err. Description, vbExclamation, "Error Cccurred", Err.HelpFile, Err.Hel pContext
Exit Sub
file_error:

Call MsgBox(Err.Description, vbOKOnly) 'Display any error nessage

d ose #FileHandl e

End Sub

204 Chapter 4

Creating and Downloading Waveform Files
Programming Examples

HP Basic Programming Examples

This section contains the following programming examples:

¢ “Creating and Downloading Waveform Data Using HP BASIC for Windows®” on page 205

¢ “Creating and Downloading Waveform Data Using HP BASIC for UNIX” on page 208

¢ “Creating and Downloading E443xB Waveform Data Using HP BASIC for Windows” on page 210
¢ “Creating and Downloading E443xB Waveform Data Using HP Basic for UNIX” on page 212

Creating and Downloading Waveform Data Using HP BASIC for Windows®?!
On the documentation CD, this programming example’s name is “hpbasicWin.txt.”

The following program will download a waveform using HP Basic for Windows into volatile ARB
memory. The waveform generated by this program is the same as the default SI NE_TEST WM
waveform file available in the signal generator’s waveform memory. This code is similar to the code
shown for BASIC for UNIX but there is a formatting difference in line 130 and line 140.

To download into non-volatile memory, replace line 190 with:
190 OUTPUT @PSG USING "#K";"MMEM:DATA "'NVWFM:testfile"", #"

As discussed at the beginning of this section, I and Q waveform data is interleaved into one file in
2’s compliment form and a marker file is associated with this I/Q waveform file.

In the Qut put commands, USI NG “#, K' formats the data. The pound symbol (#) suppresses the
automatic EOL (End of Line) output. This allows multiple output commands to be concatenated as if
they were a single output. The “K’ instructs HP Basic to output the following numbers or strings in
the default format.

10 ! RE-SAVE "BASIC Wn_file"

20 Num_poi nt s=200

30 ALLOCATE | NTEGER I nt _array(1: Num poi nt s*2)

40 DEG

50 FOR 1 =1 TO Num poi nts*2 STEP 2

60 Int_array(l)=INT(32767*(SI N(I1*360/ Num points)))
70 NEXT 1

80 FOR 1 =2 TO Num poi nts*2 STEP 2

90 Int_array(l)=INT(32767*(COS(1*360/ Num points)))
100 NEXT |

110 PRI NT "Data Generated"

120 Nbyt es=4* Num _poi nt s

130 ASSI GN @sg TO 719

140 ASSI GN @sgb TO 719; FORVAT MSB FI RST
150 Nbyt es$=VAL$(Nbyt es)

160 Ndi gi t S=LEN(Nbyt es$)

1. Windows and MS Windows are U.S registered trademarks of Microsoft Corporation.

Chapter 4 205

Creating and Downloading Waveform Files
Programming Examples

170
180
190
200
210
220
230
240
250
260
270
280
290

Ndi gi t s$=VAL$(Ndi gi t s)

VAT 1

QUTPUT @Psg USING "#, K";": MVEM DATA ""WFML: data_file"", #"
QUTPUT @Psg USI NG "#, K"; Ndi gi t s$
QUTPUT @Psg USI NG "#, K'; Nbytes$
VAT 1

QUTPUT @Psgb; I nt _array(*)

QUTPUT @Psg; END

ASSI GN @sg TO *

ASSI GN @sgb TO *

PRI NT

PRI NT "*END*"

END

Program Comments

10: Program file name

20: Sets the number of points in the waveform.

30: Allocates integer data array for I and Q waveform points.

40: Sets HP BASIC to use degrees for cosine and sine functions.

50: Sets up first loop for I waveform points.

60: Calculate and interleave I waveform points.

70: End of loop

80 Sets up second loop for Q waveform points.

90: Calculate and interleave Q waveform points.

100: End of loop.

120: Calculates number of bytes in I/Q waveform.

130: Opens an I/O path to the signal generator using GPIB. 7 is the address of the GPIB card in
the computer, and 19 is the address of the signal generator. This I/O path is used to send
ASCII data to the signal generator.

140: Opens an I/O path for sending binary data to the signal generator.

150: Creates an ASCII string representation of the number of bytes in the waveform.

160 to 170: Finds the number of digits in Nbytes.

190: Sends the first part of the SCPI command, MEM:DATA along with the name of the file,
data fil e, that will receive the waveform data. The name, data fil e, will appear in the
signal generator’s memory catalog.

206 Chapter 4

Creating and Downloading Waveform Files
Programming Examples

Program Comments (Continued)

200 to 210: Sends the rest of the ASCII header.

230: Sends the binary data. Note that PSGb is the binary I/O path.
240: Sends an End-of-Line to terminate the transmission.

250 to 260: Closes the connections to the signal generator.

290: End the program.

Chapter 4 207

Creating and Downloading Waveform Files
Programming Examples

Creating and Downloading Waveform Data Using HP BASIC for UNIX
On the documentation CD, this programming example’s name is “hpbasicUx.txt.”

The following program shows you how to download waveforms using HP Basic for UNIX. The code is
similar to that shown for HP BASIC for Windows, but there is a formatting difference in line 130 and
line 140.

To download into non-volatile memory, replace line 190 with:
190 OUTPUT @PSG USING "#K";""MMEM:DATA "'NVWFM:testfile"", #"

As discussed at the beginning of this section, I and Q waveform data is interleaved into one file in
2’s compliment form and a marker file is associated with this I/Q waveform file.

In the Qut put commands, US| NG “#, K' formats the data. The pound symbol (#) suppresses the
automatic EOL (End of Line) output. This allows multiple output commands to be concatenated as if
they were a single output. The “K” instructs HP BASIC to output the following numbers or strings in
the default format.

10 ! RE-SAVE "UNI X_file"

20 Num_poi nt s=200

30 ALLOCATE | NTEGER I nt_array(1: Num poi nts*2)

40 DEG

50 FOR 1 =1 TO Num_poi nts*2 STEP 2

60 Int_array(l)=INT(32767*(SI N(1*360/ Num poi nts)))
70 NEXT |

80 FOR 1 =2 TO Num_poi nts*2 STEP 2

90 Int_array(l)=INT(32767*(COS(|*360/ Num poi nts)))
100 NEXT |

110 PRI NT "Data generated "

120 Nbyt es=4* Num poi nt's

130 ASSI GN @Psg TO 719; FORVAT ON

140 ASSI GN @Psgb TO 719; FORVAT OFF
150 Nbyt es$=VAL$(Noyt es)

160 Ndi gi t sS=LEN(Nbyt es$)

170 Ndi gi t s$=VAL$(Ndi gi ts)

180 WAIT 1

190 QUTPUT @Psg USING "#, K';": MVEM DATA ""WFML: data_file"", #"
200 OQUTPUT @Psg USING "#, K'; Ndi gi t s$
210 OUTPUT @Psg USING "#, K'; Noyt es$

220 WAIT 1
230 QUTPUT @psgb; Int_array(*)
240 WAIT 2

241 OUTPUT @pPsg; END
250 ASSIGN @rsg TO *
260 ASSIGN @rsgb TO *
270 PRINT

280 PRINT "*END*"

208 Chapter 4

290 END

Creating and Downloading Waveform Files
Programming Examples

Program Comments

10: Program file name

20: Sets the number of points in the waveform.

30: Allocates integer data array for I and Q waveform points.

40: Sets HP BASIC to use degrees for cosine and sine functions.

50: Sets up first loop for I waveform points.

60: Calculate and interleave I waveform points.

70: End of loop

80 Sets up second loop for Q waveform points.

90: Calculate and interleave Q waveform points.

100: End of loop.

120: Calculates number of bytes in I/Q waveform.

130: Opens an I/O path to the signal generator using GPIB. 7 is the address of the GPIB card in
the computer, and 19 is the address of the signal generator. This I/O path is used to send
ASCII data to the signal generator.

140: Opens an I/O path for sending binary data to the signal generator.

150: Creates an ASCII string representation of the number of bytes in the waveform.

160 to 170: Finds the number of digits in Nbytes.

190: Sends the first part of the SCPI command, MEM:DATA along with the name of the file,
data_fil e, that will receive the waveform data. The name, data_fil e, will appear in the
signal generator’s memory catalog.

200 to 210: Sends the rest of the ASCII header.

230: Sends the binary data. Note that PSGb is the binary I/O path.

240: Sends an End-of-Line to terminate the transmission.

250 to 260: Closes the connections to the signal generator.

290: End the program.

Chapter 4

209

Creating and Downloading Waveform Files
Programming Examples

Creating and Downloading E443xB Waveform Data Using HP BASIC for Windows
On the documentation CD, this programming example’s name is “hpbasicWin2.txt.”

The following program shows you how to download waveforms using HP Basic for Windows into
volatile ARB memory. This program is similar to the following program example as well as the
previous examples. The difference between BASIC for UNIX and BASIC for Windows is the way the
formatting, for the most significant bit (MSB) on lines 110 and 120, is handled.

To download into non-volatile ARB memory, replace line 80 with:
160 OUTPUT @PSG USING "#,K";""MMEM:DATA "'NVARBI:testfile"", #"
and replace line 130 with:

210 OUTPUT @PSG USING "#,K";"MMEM:DATA "'"NVARBQ:testfile"", #"

First, the I waveform data is put into an array of integers called | wf m dat a and the Q waveform
data is put into an array of integers called Qwfm_data. The variable Noyt es is set to equal the
number of bytes in the I waveform data. This should be twice the number of integers in | wf m dat a,
since an integer is 2 bytes. Input integers must be between 0 and 16383.

In the Qut put commands, US| NG “#, K' formats the data. The pound symbol (#) suppresses the
automatic EOL (End of Line) output. This allows multiple output commands to be concatenated as if
they were a single output. The “K’ instructs HP Basic to output the following numbers or strings in
the default format.

10 | RE-SAVE "ARB_IQ Wn_file"

20 Num_poi nt s=200

30 ALLOCATE | NTEGER | wf m dat a(1: Num poi nts), Qs m dat a(1: Num_poi nt's)

40 DEG

50 FOR | =1 TO Num poi nts

60 I'wf m data(l) =1 NT(8191*(SI N(|*360/ Num _poi nts)) +8192)
70 QM m dat a(1) =1 NT(8191*(COS(| *360/ Num _poi nts)) +8192)
80 NEXT |

90 PRINT "Data Cenerated"

100 Nbyt es=2* Num poi nt s

110 ASSIGN @°sg TO 719

120 ! ASSIGN @sgb TO 719; FORVAT MSB FI RST

130 Nbyt es$=VAL$(Noyt es)

140 Ndi gi t S=LEN(Nbyt es$)

150 Ndi gi t s$=VAL$(Ndi gi ts)

160 OUTPUT @Psg USING "#, K';": MVEM DATA ""ARBI : fil e_name_1"", #"
170 OUTPUT @Psg USI NG "#, K'; Ndi gi t s$

180 OUTPUT @Psg USI NG "#, K'; Nbytes$

190 QUTPUT @sgb; | wf m data(*)

200 OUTPUT @Psg; END

210 OUTPUT @Psg USING "#, K';": MVEM DATA ""ARBQ fil e_name_1"", #"
220 OUTPUT @Psg USING "#, K'; Ndi gi t s$

230 OUTPUT @Psg USING "#, K'; Nbytes$

240 QUTPUT @sghb; QM m dat a(*)

210 Chapter 4

250
260
270
280
290
300

Creating and Downloading Waveform Files
Programming Examples

QUTPUT @sg; END
ASSI GN @sg TO *
ASSI GN @sgb TO *
PRI NT

PRI NT **END*"
END

Program Comments

10: Program file name.

20 Sets the number of points in the waveform.

30: Defines arrays for I and Q waveform points. Sets them to be integer arrays.
40: Sets HP BASIC to use degrees for cosine and sine functions.

50: Sets up loop to calculate waveform points.

60: Calculates I waveform points.

70: Calculates Q waveform points.

80: End of loop.

160 and 210: The I and Q waveform files have the same name

90 to 300: See the table on page 206 for program comments.

Chapter 4

211

Creating and Downloading Waveform Files
Programming Examples

Creating and Downloading E443xB Waveform Data Using HP Basic for UNIX
On the documentation CD, this programming example’s name is “hpbasicUx2.txt.”

The following program shows you how to download waveforms using HP BASIC for UNIX. It is similar
to the previous program example. The difference is the way the formatting for the most significant bit
(MSB) on lines is handled.

First, the I waveform data is put into an array of integers called | W m dat a and the Q waveform
data is put into an array of integers called QA m dat a. The variable Noytes is set to equal the
number of bytes in the I waveform data. This should be twice the number of integers in | wf m dat a,
since an integer is represented 2 bytes. Input integers must be between 0 and 16383.

In the Qut put commands, USI NG “#, K' formats the data. The pound symbol (#) suppresses the
automatic EOL (End of Line) output. This allows multiple output commands to be concatenated as if
they were a single output. The “K” instructs HP BASIC to output the following numbers or strings in
the default format.

10 | RE-SAVE "ARB_IQfile"

20 Num_poi nt s=200

30 ALLOCATE | NTEGER | wf m dat a(1: Num poi nts), Qa m dat a(1: Num_poi nt's)

40 DEG

50 FOR | =1 TO Num poi nts

60 I'wf m data(l)=I NT(8191*(SI N(|*360/ Num _poi nts)) +8192)
70 Quf m dat a(1) =1 NT(8191*(COS(| *360/ Num _poi nts)) +8192)
80 NEXT |

90 PRINT "Data Cenerated"

100 Nbyt es=2* Num poi nt s

110 ASSIGN @°sg TO 719; FORVAT ON

120 ASSIGN @Psgb TO 719; FORMAT OFF
130 Nbyt es$=VAL$(Noyt es)

140 Ndi gi t S=LEN(Nbyt es$)

150 Ndi gi t s$=VAL$(Ndi gi ts)

160 OUTPUT @Psg USING "#, K';": MVEM DATA ""ARBI : fil e_name_1"", #"
170 OUTPUT @Psg USI NG "#, K'; Ndi gi t s$
180 OUTPUT @Psg USING "#, K'; Nbytes$
190 QUTPUT @sgb; | wf m data(*)

200 OUTPUT @Psg; END

210 OUTPUT @Psg USING "#, K";": MVEM DATA ""ARBQ fil e_name_1"", #"
220 OUTPUT @Psg USING "#, K'; Ndi gi t s$
230 OUTPUT @Psg USING "#, K'; Nbytes$
240 OQUTPUT @sghb; QM m dat a(*)

250 OUTPUT @Psg; END

260 ASSIGN @°sg TO *

270 ASSIGN @°sgb TO *

280 PRINT

290 PRINT "*END*"

212 Chapter 4

300 END

Creating and Downloading Waveform Files
Programming Examples

Program Comments

10: Program file name.

20 Sets the number of points in the waveform.

30: Defines arrays for I and Q waveform points. Sets them to be integer arrays.
40: Sets HP BASIC to use degrees for cosine and sine functions.

50: Sets up loop to calculate waveform points.

60: Calculates I waveform points.

70: Calculates Q waveform points.

80: End of loop.

160 and 210: The I and Q waveform files have the same name

90 to 300 See the table on page 209 for program comments.

Chapter 4

213

Creating and Downloading Waveform Files
Troubleshooting Waveform Files

Troubleshooting Waveform Files

Symptom Possible Cause

Attempting to download a waveform that has the same name as the waveform
currently being played by the signal generator.

ERROR 224, Text file busy
To solve the problem, either change the name of the waveform being downloaded
or turn off the ARB.

ERROR 628, DAC over range The amplitude of the signal exceeds the DAC input range. The typical causes are
unforeseen overshoot (DAC values within range) or the input values exceed the
DAC range.

To solve the problem, scale or reduce the DAC input values. For more information,
see “DAC Input Values” on page 135.

ERROR 629, File format invalid The signal generator requires a minimum of 60 samples to build a waveform and
the same number of I and Q data points.

There is not enough space in the ARB memory for the waveform file being
downloaded.

ERROR -321, Out of memory
To solve the problem, either reduce the file size of the waveform file or delete
unnecessary files from ARB memory.

No RF Output The marker RF blanking function may be active. To check for and turn RF blanking
off, press Mode > Dual ARB > ARB Setup > Marker Utilities >

Marker Routing > Pulse/RF Blank > None. This problem occurs when the file header
contains unspecified settings and a previously played waveform used the marker
RF blanking function.

For more information on the marker functions, see the E8257D/67D PSG Signal
Generators User’s Guide.

Undesired output signal Check for the following:

® The data was downloaded in little endian order. See “Little Endian and Big
Endian (Byte Order)” on page 134 for more information.

® The waveform contains an odd number of samples. An odd number of samples
can cause waveform discontinuity. See “Waveform Phase Continuity” on
page 142 for more information.

214 Chapter 4

5 Creating and Downloading User-Data Files

This chapter explains the requirements and process of downloading user-data and contains the
following sections:

¢ “User Bit/Binary File Data Downloads” on page 215

e “FIR Filter Coefficients Downloads” on page 219

¢ “Downloads Directly into Pattern RAM (PRAM)” on page 221

* “Save and Recall Instrument State Files” on page 225

¢ “Download User Flatness Corrections Using C++ and VISA” on page 235

* “Data Transfer Troubleshooting” on page 239

User Bit/Binary File Data Downloads

NOTE This feature is available only in E8257D PSG vector signal generators with Option 601 or
602.

The signal generator accepts user file data downloads. The files can be in either binary or bit format
with the data represented as bytes. Both file types can be stored in the signal generator’s
non-volatile memory (see “Waveform Memory” on page 144 for more information on memory).

¢ In binary format all 8 bits of the byte are taken as data and used.

* In bit format the number of bits in the file is known and the non-data bits in the last byte are
discarded.

After downloading the files, they can be selected as the transmitting data source. This section
contains information on transferring user file data from a PC to the signal generator. It explains how
to download user files into the signal generator’s memory and modulate the carrier signal with those
files.

When a file is selected for use in Real-time Custom mode, the file is modulated as a continuous,
unframed stream of data, according to the modulation type, symbol rate, and filtering associated with
the selected format.

When a user file is selected as the data source, the signal generator’s firmware loads the data into
waveform memory, and sets the other control bits depending on the operating mode, regardless of
whether framed or unframed transmission is selected. In this manner, user files are mapped into
waveform memory bit-by-bit; one bit per 32 bit control word.

Unlike pattern RAM (PRAM) downloads (see page 221), user files contain “data field” information
only. The control data bits required for files downloaded directly into PRAM are not required for user
files.

Chapter 5 215

Creating and Downloading User-Data Files
User Bit/Binary File Data Downloads

Data Requirements and Limitations
1. Data must be in binary format. SCPI specifies data represented in bytes.
2. For binary downloads, bit length must be a multiple of 8.

SCPI specifies that data is represented in bytes and the binary memory stores data as bytes.
If the length (in bits) of the original data pattern is not a multiple of 8, you may need to perform
one of the following actions:

¢ add additional bits to complete the byte

* replicate the data pattern without discontinuity until the total length is a multiple of 8 bits
* truncate and discard bits until you reach a string length that is a multiple of 8

e use a bit file and download to bit memory instead

3. Download size limitations are directly proportional to the available memory space, and the signal
generator’s pattern RAM storage size (Option 601 = 800 kB or Option 602 = 6.4 MB).

The maximum memory for bit and binary user data is less than the maximum memory for PRAM
data. You may have to delete files from memory before downloading larger files.

If the data fields absolutely must be continuous data streams, and the size of the data exceeds
the available PRAM, then real-time data and synchronization can be supplied by an external data
source to the front-panel DATA, DATA CLOCK, and SYMBOL SYNC connectors.

NOTE References to pattern RAM (PRAM) are for descriptive purposes only and relate to the
manner in which the memory is being used. PRAM and volatile waveform memory (WFM1)
actually utilize the same storage media.

Bit and Binary Directories

User files can be downloaded to a bit (/ user/bit/)or binary (/ user/ bi n/) directory in either
volatile or non-volatile memory.

NOTE File names are limited to 23 characters.

Bit Directory Downloads

The bit directory (/ user/bit/) accepts data in integer number of bits, up to the maximum available
memory. For additional information on signal generator memory, see “Waveform Memory” on
page 144.

The data length in bytes for files downloaded to bit memory is equal to the number of significant bits
plus seven, divided by eight, then rounded down to the nearest integer. Each file has a 16-byte
header associated with it.

There must be enough bytes to contain the specified number of bits. If the number of bits is not a
multiple of 8, the least significant bits of the last byte are ignored.

For example, specifying 14 bits of a 16-bit string using the command : MEMory: DATA BI T
"file_name", 14, #12Qz results in the last 2 bits being ignored. See the following figure.

216 Chapter 5

Creating and Downloading User-Data Files
User Bit/Binary File Data Downloads

010 0001 0111 1010 original user-defined data contains 2 bytes, 16 bits total
SCPI command sets bit count to 14; the last 2 bits are ignored
010 0001 0111 1610)

NOTE A bit directory provides more versatility, and is the preferred memory location for user file
downloads.

SCPI Commands
Send the following command to download the user file data into the signal generator’s bit directory:

:MEMory: DATA: BI T "<fil e_nanme>", <bit count >, <dat abl ock>

Example

: MEMory: DATA: BI T "fil e_name", 16, #16Qz$0&5

file_name provides the user file name as it will appear in the signal generator’s bit catalog
16 Number of bits used.

#1 1 decimal digits will be used to define the number of data bytes.

6 6 bytes of data will follow

Q@ $085 the ASCII representation of the 48 bits of data that are downloaded to the signal

generator, however not all ASCII values are printable

Querying the Waveform Data
Use the following SCPI command to query the user bit data file from a binary directory:
: MEMory: DATA: BI T? "<fil e_name>"

The output format is the same as the input format.

Binary Directory Downloads

The binary directory (/ user/bi n/) requires that data be formatted in bytes. Files stored or
downloaded to a binary directory are converted to bit files prior to editing in the bit file editor, after
which they are stored in a bit directory as bit files. A bit directory is preferred for user file
downloads.

Chapter 5 217

Creating and Downloading User-Data Files
User Bit/Binary File Data Downloads

SCPI Commands
: MVEM DATA "<fil e_nane>", <data_ bl ock>

Send this command to download the user file data into the signal generator’s binary directory. The
variable <fi |l e_name> denotes the name of the downloaded user file stored in the signal generator.

NOTE The command syntax and downloading method for arbitrary block data depends on the
programming language and software libraries you are using.

If you are using Agilent Technologies’ VISA COM I/O Library (available in the Agilent 10
Libraries for Windows Version M.01.01.04), you can use the Wi t el EEEBI ock method, which
does not use the #ABC formatting parameter. Refer to “Visual Basic Programming Examples”
on page 200 for an example of this method.

Sample Command Line
: MMEM DATA "“fil e_nane", #ABC

file_name the name of the user file stored in the signal generator’s memory

indicates the start of the data block

A the number of decimal digits to follow in B

B a decimal number specifying the number of data bytes in C

C the binary user file data

Example

: MMEM DATA "<fil e_name>", #2151&82S?4g@7p! 897

<fil e_name> provides the user file name as it will appear in the signal generator’s binary
memory catalog

indicates the start of the data block
defines the number of decimal digitsto follow in “B”

15 denotes how many bytes of data are to follow

182S?4g@7p! 897 the ASCII representation of the binary datathat is downloaded to the signal

generator, however not all ASCII values are printable

Querying the Waveform Data
Use the following SCPI command line to query user file data from a binary memory location:
: MVEM DATA? "fil e_nane"

The output format is the same as the input format and includes the file length and file size
information.

218 Chapter 5

Creating and Downloading User-Data Files
FIR Filter Coefficients Downloads

Selecting Downloaded User Files as the Transmitted Data

Use the following steps to select the desired user file from the catalog of user files as a continuous
stream of unframed data for a custom modulation.

Via the front panel:

1. For custom modulation, press Mode > Custom > Real Time I/Q Baseband > Data > User File. and highlight
the desired file in the catalog.

[SOURce] : RAD 0: QUSTom DATA "BI T: <fi |l e_name>" or
[SOURce] : RAD o: QUSTom DATA "<fil e_name>" for binary files

Highlight the desired file in the catalog of user files.
3. Press SelectFile > Custom OffOn to On.
[SOURce] : RAD 0: QUSTonj : STATe] On
4. Modulate and activate the carrier:
a. Set the carrier frequency.
[: SOURce] : FREQuency: Fl Xed 2. 5GH#
b. Set the carrier amplitude.
[: SOURce] : PONer[: LEVel][: 1 Mvedi ate] [: AVPLI t ude] -10. 0DBM
c. Turn on modulation.
: QUTPut : MCDul ati on[: STATe] ON
d. Turn on the RF output.
: QUTPut [: STATe] ON

FIR Filter Coefficients Downloads

NOTE This feature is available only in E8257D PSG vector signal generators with Option 601 or
602.

The signal generator accepts finite impulse response (FIR) filter coefficient downloads. After
downloading the coefficients, these user-defined FIR filter coefficient values can be selected as the
filtering mechanism for the active digital communications standard.

Data Requirements and Limitations

¢ Data must be in ASCII format. The signal generator processes FIR filter coefficients as floating
point numbers.

¢ Data must be in List format. FIR filter coefficient data is processed as a list by the signal
generator’s firmware. See “Sample Command Line” on page 223.

¢ Filters containing more symbols than the hardware allows are not selectable for that
configuration.

The Real Time I/Q Baseband FIR filter files are limited to 1024 taps (coefficients), 64 symbols,
and a 16-times oversample ratio. FIR filter files with more than 64 symbols cannot be used.

Chapter 5 219

Creating and Downloading User-Data Files
FIR Filter Coefficients Downloads

The ARB Waveform Generator FIR filter files are limited to 512 taps and 512 symbols.

¢ The oversample ratio (OSR) is the number of filter taps per symbol. Oversample ratios from 1
through 32 are possible. The maximum combination of OSR and symbols allowed is 32 symbols
with an OSR of 32.

¢ The sampling period (At) is equal to the inverse of the sampling rate (F'S). The sampling rate is
equal to the symbol rate multiplied by the oversample ratio. For example, for a symbol rate of
270.83 ksps, if the oversample ratio is 4, the sampling rate is 1083.32 kHz and At (inverse of FS)
is 923.088 ns.

Downloading FIR Filter Coefficients

Use the following SCPI command line to download FIR filter coefficients from the PC to the signal
generator’s FIR memory:

: MEMory: DATA FIR "<fil e_nane>", osr, coefficient{, coefficient}

Use the following SCPI command line to query list data from FIR memory:

: MEMory: DATA FIR? "<fil e_nane>"

Sample Command Line

The following SCPI command downloads a set of FIR filter coefficient values (the values are for a
Gaussian filter) and names the file “FIR1”:

- MEMory: DATA FIR "FIRL", 4,0, 0, 0, 0, 0, 0. 000001, 0. 000012, 0. 000132, 0. 001101,

0. 006743, 0. 030588, 0. 103676, 0. 265790, 0. 523849, 0. 809508, 1, 1, 0. 809508, 0. 523849,
0. 265790, 0. 103676, 0. 030588, 0. 006743, 0. 001101, 0. 000132, 0. 000012, 0. 000001, O,
0,0,0,0

FI R1 assigns the name FIR1 to the associated OSR (over sample ratio) and coefficient
values. The file is then represented with this name in the FIR File catalog.

specifies the oversample ratio.

4
0,0,0,0,0,
0. 000001, . .. represent FIR filter coefficients.

Selecting a Downloaded User FIR Filter as the Active Filter

Using FIR Filter Data for Custom Modulation

Use the following steps to select user FIR filter data as the active filter for a custom modulation
format.

Press Mode > Custom >
For the Real Time I/Q Baseband mode:

* Press Real Time 1/Q Baseband > Filter > Select > User Fir > (Highlight File) > Select File
Press Mode Setup > Custom On
Via the remote interface:
[: SOURce] : RADI o: CUSTom FI LTer "<fil e_nane>"
[: SOURce] : RADI 0: CUSTon{ : STATe] On

220 Chapter 5

Creating and Downloading User-Data Files
Downloads Directly into Pattern RAM (PRAM)

For the Arb Waveform Generator mode:

* Press Arb Waveform Generator > Digital Mod Define > Filter > Select > User Fir >
(Highlight File) > Select File
Press Mode Setup > Digital Modulation On
Via the remote interface:
[: SOURce] : RADI o: DMODul ati on: ARB: FI LTer "<fil e_name>"
[: SOURce] : RADI o: DMODul at i on: ARB[: STATe] On

Downloads Directly into Pattern RAM (PRAM)

NOTE This feature is available only in E8257D PSG vector signal generators with Option 601 or
602.

NOTE References to pattern RAM (PRAM) are for descriptive purposes only, relating to the manner
in which the memory is being used. PRAM and volatile waveform memory (WFM1) use the
same memory.

Typically, the signal generator’s firmware generates the required data and framing structure and
loads this data into Pattern RAM (PRAM). The data is read by the baseband generator, which in turn
is input to the I/Q modulator. The signal generator can also accept data downloads directly into
PRAM from a computer. Programs created with applications such as MATLAB"! or MathCad"? can
generate data which can be downloaded directly into PRAM in either a list format or a block format.
Direct downloads to PRAM allow complete control over bursting, which is especially helpful for
designing experimental or proprietary framing schemes.

The signal generator’s baseband generator assembly builds modulation schemes by reading data
stored in PRAM and constructing framing protocols according to the data patterns present. PRAM
data can be manipulated (types of protocols changed, standard protocols modified or customized,
etc.) using either the front panel interface, or remote commands.

Preliminary Setup

CAUTION Set up the digital communications format before downloading data. This enables the
signal generator to define the modulation format, filter, and data clock. Activating the
digital communications format after the data has been downloaded to PRAM can corrupt
the downloaded data.

1. MATLAB-is-a registered trademark of MathWorks, Inc.

2. Mathcad is aregistered trademark of Mathsoft Engineering & Education Inc.

Chapter 5 221

Creating and Downloading User-Data Files
Downloads Directly into Pattern RAM (PRAM)

Data Requirements and Limitations

1. Data format:
List Format: Because list format downloads are parsed before they are loaded into PRAM, data
must be 8-bit, unsigned integers, from 0 to 255.
Block Format: Because the baseband generator reads binary data from the data generator, data
must be in binary form.
2. Total (data bits plus control bits) download size limitations are 8 MB with Option 601 and 64 MB
with Option 602. Each sample for PRAM uses 4 bytes of data.
A data pattern file containing 8 megabits of modulation data must contain another 56 megabits of
control information. A file of this size requires 8 MB of memory.
3. For every bit of modulation data (bit 0), you must provide 7 bits of control information (bits
1-7).
The signal generator processes data in bytes. Each byte contains 1 bit of “data field” information,
and seven bits of control information associated with the data field bit. See the following table for
the required data and control bits.
Bit |Function Value Comments
0 Data 0/1 The data to be modulated; “unspecified” when burst (bit 2) = 0.
1 Reserved 0 Always 0.
2 Burst 0/1 Set to 1 = RF on.
Set to 0 = RF off.
For non-bursted, non-TDMA systems, this bit is set to 1 for all memory locations, leaving RF
output on continuously. For framed data, this bit is set to 1 for on timeslots and 0 for off
timeslots
3 Reserved 0 Always 0.
4 Reserved 1 Always 1.
5 Reserved 0 Always 0.
6 Event 1 Output 0/1 Set to 1 = a level transition at the EVENT 1 BNC connector.
Use examples: as a marker output to trigger external hardware when data pattern restarts;
toggling in alternate addresses to create a data-synchronous pulse train.
7 Pattern Reset 0/1 Set to 0 = continue to next sequential memory address.
Set to 1 = end of memory and restart memory playback.
Set to 0 for all bytes except last address of PRAM, where 1 restarts pattern.
222 Chapter 5

Creating and Downloading User-Data Files
Downloads Directly into Pattern RAM (PRAM)

Downloading in List Format

NOTE Because of parsing, list data format downloads are significantly slower than block format
downloads.

SCPI Command to Download Data in List Format
: MEMory: DATA: PRAM FI LE: LI ST "<fil e name>", <ui nt 8>[, <ui nt 8>, <. .. >]

This command downloads the list-formatted data directly into PRAM. The variable <ui nt 8> is any of
the valid 8-bit, unsigned integer values between 0 and 255, as specified by the table on page 222.
Note that each value corresponds to a unique byte/address in PRAM.

Sample Command Line

For example, to burst a FIX4 data pattern of “1100” five times, then turn the burst off for 32 data
periods (assuming a 1-bit/symbol modulation format), the command is:

: MEMory: DATA: PRAM FI LE: LI ST "<newFi | e>", 85, 21, 21, 20, 20, 21, 21, 20, 20, 21, 21, 20,

20, 21, 21, 20, 20, 21, 21, 20, 20, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 1
6, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 144

newri |l e name of the PRAM file as it will appear in waveform memory

21 signifies data = 1, burst = on (1)

20 signifies data = 0, burst = on (1)

16 signifies data = unspecified, burst = off (0)

85 enables event 1 trigger signifying the beginning of the data pattern
144 signifies data = unspecified, burst = off (0), pattern repeat = on (1)

Downloading in Block Format

NOTE Because there is no parsing, block data format downloads are faster than list format
downloads.

SCPI Command to Download Data in Block Format
: MEMory: DATA: PRAM FI LE: BLOXK "<fil e nanme>", <dat a bl ock>
This command downloads the block-formatted data directly into pattern RAM.

NOTE The command syntax and downloading method for arbitrary block data depends on the
programming language and software libraries you are using.

If you are using Agilent Technologies’ VISA COM I/O Library (available in the Agilent 10
Libraries for Windows Version M.01.01.04), you can use the Wi t el EEEBI ock method, which
does not use the #ABC formatting parameter. Refer to the download program “Visual Basic
Programming Examples” on page 200 for an example of this method.

Chapter 5 223

Creating and Downloading User-Data Files
Downloads Directly into Pattern RAM (PRAM)

Sample Command Line
A sample command line:
: MEMory: DATA: PRAM FI LE: BLOXK "<fil e name>", #ABC

indicates the start of the data block.

A the number of decimal digits to follow in B.

B a decimal number specifying the number of data bytes in C.
C the binary data.

Example 1

: MEMory: DATA: PRAM FI LE: BLOCK "<new fil e>", #1912s4%7*9!

<new_Fi | e> name of the PRAM file as it will appear in waveform memory

indicates the start of the data block.

1 1 decimal digits to follow.

9 9 bytes of data to follow.

12s54%* 9! the ASCII representation of the binary data downloaded to the signal generator,

however not all ASCII values are printable

Modulating and Activating the Carrier

The following section explains how to modulate the carrier with the data downloaded to PRAM, first
from the front panel interface, and then via remote SCPI commands.

Via the Front Panel
1. Set the carrier frequency to 2.5 Ghz (Frequency > 2.5 > GHz).

2. Set the carrier amplitude -10.0 dBm (Amplitude > -10 > dBm).
3. Turn modulation on (press Mod On/0ff until the display annunciator reads MCD ON).
4. Activate the RF output (press RFOn/0ff until the display annunciator reads RF ON).

Via the Remote Interface
Send the following SCPI commands to modulate and activate the carrier.
1. Set the carrier frequency to 2.5 Ghz:
[SOURce] : FREQuency: Fl Xed 2. 5GHZ
2. Set the carrier power to -10.0 dBm:
[SOURce] : PONér[: LEVel][: | Medi at €] [: AMPLI t ude] - 10. ODBM
3. Activate the modulation:
: QUTPut : MCDul at i on[: STATe] ON
4. Activate the RF output:
:QUTPut [: STATe] ON

224 Chapter 5

Creating and Downloading User-Data Files
Save and Recall Instrument State Files

Viewing a PRAM Waveform

After the waveform data is written to PRAM, the data pattern can be viewed using an oscilloscope.
There is delay (approximately 12-symbols) between a state change in the burst bit and the
corresponding effect at the RF out. This delay varies with symbol rate and filter settings, and
requires compensation to advance the burst bit in the downloaded PRAM file.

Save and Recall Instrument State Files

The signal generator can save instrument state settings to memory. An instrument state setting
includes any instrument state that does not survive a signal generator preset or power cycle such as
frequency, amplitude, attenuation, and other user-defined parameters. The instrument state settings
are saved in memory and organized into sequences and registers. There are 10 sequences with 100
registers per sequence available for instrument state settings. These instrument state files are stored
in the USER/ STATE directory.

The save function does not store data such as arb formats, table entries, list sweep data and so forth.
Use the store commands or store softkey functions to store these data file types to the signal
generator’s memory catalog. The save function will save a reference to the data file name associated
with the instrument state.

Before saving an instrument state that has a data file associated with it, store the data file. For
example, if you are editing a multitone arb format, store the multitone data to a file in the signal
generator’s memory catalog (multitone files are stored in the USER/ MTONE directory). Then save the
instrument state associated with that data file. The settings for the signal generator such as
frequency and amplitude and a reference to the multitone file name will be saved in the selected
sequence and register number. Refer to the E8257D/67D PSG Signal Generators User’s Guide and
E8257D/67D PSG Signal Generators Key Reference for more information on the save and recall
functions.

Save and Recall SCPI Commands

The following command sequence saves the current instrument state, using the * SAV command, in
sequence 1, register 01. A comment is then added to the instrument state.

*SAV 01, 1
: MEM STAT: COMM 01,1, "Instrunent state comrent"

If there is a data file associated with the instrument state, there will be a file name reference saved
along with the instrument state. However, the data file must be stored in the signal generator’s
memory catalog as the * SAV command does not save data files. For more information on storing file
data such as modulation formats, arb setups, and table entries refer to the Storing Files to the
Memory Catalog section in the E8257D/67D PSG Signal Generators User’s Guide.

NOTE File names are referenced when an instrument state is saved, but a file will NOT be stored
with the save function.

The recall function will recall the saved instrument state. If there is a data file associated with the
instrument state, the file will be loaded along with the instrument state. The following command
recalls the instrument state saved in sequence 1, register 01.

*RCL 01,1

Chapter 5 225

Creating and Downloading User-Data Files
Save and Recall Instrument State Files

Save and Recall Programming Example

The following programming example uses VISA and C# to save and recall signal generator instrument
states. Instruments states are saved to and recalled from your computer. This console program
prompts the user for an action: Backup State Files, Restore State Files, or Quit.

The Backup State Files choice reads the signal generator’s state files and stores it on your computer
in the same directory where the State_Files.exe program is located. The Restore State Files selection
downloads instrument state files, stored on your computer, to the signal generator’s State directory.
The Quit selection exists the program. The figure below shows the console interface and the results
obtained after selecting the Restore State Files operation.

The program uses VISA library functions. Refer to the Agilent VISA User’s Manual available on
Agilent’s website: http:\\www.agilent.com for more information on VISA functions.

The program listing for the St ate_Fi | es. ¢cs program is shown below. It is available on the
CD-ROM in the programming examples section under the same name.

C:\WINNT \Microsoft.NET" Framework' ¥1.1.4322" State_Files1.e;

1> Backup state files

2> Restore state files

3> Quit

Enter 1.2,.0r 3. Your choice:
sequence HB. register
sequence

sequence
sequence

sequence

g sequence register
1> Backup state files
2> Restore state files
3> Quit
Enter 1.2,.0r 3. Your choice:

C# and Microsoft .NET Framework

The Microsoft .NET Framework is a platform for creating Web Services and applications. There are
three components of the .NET Framework: the common language runtime, class libraries, and Active
Server Pages, called ASP.NET. Refer to the Microsoft website for more information on the .NET
Framework.

The .NET Framework must be installed on your computer before you can run the State_Files program. The
framework can be downloaded from the Microsoft website and then installed on your computer.

Perform the following steps to run the State_Files program.

1. Copy the State_Fil es. cs file from the CD-ROM programming examples section to the directory
where the .NET Framework is installed.

2. Change the TCPIPO address in the program from TCPIP0::000.000.000.000 to your PSG’s address.

3. Save the file using the . cs file name extension.

226 Chapter 5

Creating and Downloading User-Data Files
Save and Recall Instrument State Files

4. Run the Command Prompt program. Start > Run > "cnd. exe". Change the directory for the
command prompt to the location where the .NET Framework was installed.

5. Type csc.exe State_Fil es. cs at the command prompt and then press the Enter key on the
keyboard to run the program. The following figure shows the command prompt interface.

Command Prompt {3}

rosoft Windows 2808 [Version 5.80.21951]
{C> Copyright 1985-2008 Microsoft Corp.

C:S\WINNT“Microsof t .NET“Framewvorkswl .1.4322%csc.exe State_Files.cs

The State_Files.cs program is listed below. You can copy this program from the examples directory on
the PSG CD-ROM E8251-90351.

[Rk R kKR KRR KRk KR KK KR KKK kKRR R KRR K KRR K R R KRk R R KK R R
/1 FileNane: State_Files.cs

11

/1 This C# exanpl e code saves and recalls signal generator instrunent states. The saved
/1 instrunent state files are witten to the local conputer directory conputer where the
|/ State_Files.exe is located. This is a console application that uses DLL inporting to

// allow for calls to the unmanaged Agilent 10 Library VISA DLL.

11

/1 The Agilent VISA library nust be installed on your conputer for this exanple to run.

/'l Inportant: Replace the visaQOpenString with the |IP address for your signal generator.

11

[EEE kR kR Rk kR Rk Rk kR kR kR Rk kR kR kR kR kK kR Rk kR kR kR kK Rk
using System

using System | Q

usi ng System Text;

usi ng System Runtine. | nteropServices;

usi ng System Col | ecti ons;

usi ng System Text. Regul ar Expr essi ons;

nanespace State_Files

Chapter 5 227

Creating and Downloading User-Data Files
Save and Recall Instrument State Files

cl ass Mai nApp
{

/1l Replace the visaOpenString variable with your instrunent's address.

static public string visaOpenString = "TCPI PO:: 000.000. 000. 000"; //"GPIBO::19";
/1" TCPI PO: : psg3: : | NSTR";

public const uint DEFAULT_TI MEQUT = 30 * 1000;// Instrunment tineout 30 seconds.
public const int MAX_READ DEVI CE_STRI NG = 1024; // Buffer for string data reads.
public const int TRANSFER BLOCK_SI ZE = 4096;// Buffer for byte data.

/1 The main entry point for the application.
[STAThr ead]

static void Main(string[] args)

{

uint defaultRM// Open the default VISA resource manager
if (Visalnterop. OpenDefaul tRMout defaultRM == 0) // If no errors, proceed.
{
ui nt device;
/1 Open the specified VISA device: the signal generator
if (Visalnterop. Open(defaul tRM visaQpenString, Vi saAccessMde. NoLock,
DEFAULT_TI MEQUT, out device) == 0)
/1 if no errors proceed.
{
bool quit = fal se;
V\/?i le ('quit)// Get user input

Consol e. Wite("1) Backup state files\n" +
"2) Restore state files\n" +
"3) Quit\nEnter 1,2,0r 3. Your choice: ");

string choice = Consol e. ReadLi ne();
switch (choice)

{
case "1":
Backupl nstrunent State(device); // Wite instrunent state
br eak; Il files to the conputer
case "2":

228 Chapter 5

Creating and Downloading User-Data Files
Save and Recall Instrument State Files

{

Rest orel nstrunent St at e(device); // Read instrunent state
break;// files to the PSG
}
case "3":
{
quit = true;
br eak;
}
defaul t:
{
br eak;
}
}
}
Vi sal nterop. Cl ose(device);// Close the device
}
el se
{

Consol e. WiteLine("Unable to open " + visaOpenString);

}

Vi sal nterop. Cl ose(defaul tRM ; /1 Cose the default resource manager
}
el se

{

Consol e. Wi teLine("Unable to open the VI SA resource nanager");

}

/* This method restores all the sequence/register state files located in
the local directory (identified by a ".STA" file nanme extension)

to the signal generator.*/

static public void Restorelnstrunent State(uint device)
{
Directorylnfo di = new Directorylnfo(".");// Instantiate object class
Filelnfo[] rgFiles = di.CGetFiles("*.STA"); [/ Get the state files
foreach(Filelnfo fi in rgFiles)
{
Mat ch m = Regex. Match(fi.Name, @~(\d)_(\d\d)");
if (m Success)

{

Chapter 5 229

Creating and Downloading User-Data Files
Save and Recall Instrument State Files

string sequence = m Groups[1].ToString();
string register = mGoups[2].ToString();
Consol e. Wi telLine("Restoring sequence #" + sequence +

, register #' + register);

/* Save the target instrument's current state to the specified sequence/
register pair. This ensures the index file has an entry for the specified
sequence/regi ster pair. This workaround will not be necessary in future

revisions of firmware.*/

WiteDevice(device, "*SAV " + register + ", " + sequence + "\n",
true); // << on SAME line!

// Overwrite the newy created state file with the state

/1 file that is being restored.

W iteDevice(device, "MEM DATA \"/USER/ STATE/" + mToString() + "\",",

false); // << on SAME line!
WiteFil eBl ock(device, fi.Nane);
WiteDevice(device, "\n", true);

}

/* This method reads out all the sequence/register state files fromthe signal

generator and stores themin your conputer's |local directory with a ".STA"

extension */

static public void BackuplnstrunentState(uint device)
{
/1 Get the menory catalog for the state directory
WiteDevice(device, "MEM CAT: STAT?\n", false);
string catal og = ReadDevi ce(device);
/* Match the catalog listing for state files which are naned
(sequence#)_(register#) e.g. 0_01, 1_01, 2_05*/
Mat ch m = Regex. Match(catal og, "\"(\\d_\\d\\d),");
whil e (m Success)
{
/1 Grab the matched filenane fromthe regul ar expresssion
string nextFile = m Goups[1]. ToString();
/l Retrieve the file and store with a .STA extension
/1 in the current directory
Consol e. WiteLine("Retrieving state file: " + nextFile);
W iteDevice(device, "MEM DATA? \"/USER/ STATE/" + nextFile + "\"\n"

true);

230

Chapter 5

Creating and Downloading User-Data Files
Save and Recall Instrument State Files

ReadFi | eBl ock(device, nextFile + ".STA");
/1 Clear newine
ReadDevi ce(devi ce);
/1 Advance to next match in catalog string
m = m Next Mat ch();

}

/* This nmethod wites an ASCI| text string (SCPI command) to the signal generator.
If the bool "sendEnd" is true, the END line character will be sent at the
conclusion of the wite. If "sendEnd is false the END line will not be sent.*/

static public void WiteDevice(uint device, string scpi Crd, bool sendEnd)
{
byte[] buf = Encoding. ASCl | . Get Byt es(scpi Cnd);
if (!sendEnd) // Do not send the END |ine character
{
Vi sal nterop. Set Attri bute(device, VisaAttribute.SendEndEnable, 0);
}
uint retCount;
Vi sal nterop. Wite(device, buf, (uint)buf.Length, out retCount);
if (!sendEnd) // Set the bool sendEnd true.
{
Vi sal nterop. Set Attri bute(device, VisaAttribute.SendEndEnable, 1);

}

/1 This method reads an ASCII string fromthe specified device
static public string ReadDevi ce(uint device)
{

string retValue =

byte[] buf = new byte[MAX_READ DEVI CE_STRING ; // 1024 bytes maxi num read

ui nt retCount;

if (Visalnterop.Read(device, buf, (uint)buf.Length -1, out retCount) == 0)
{
retVal ue = Encodi ng. ASCl | . Get String(buf, 0, (int)retCount);
}

return retVal ue;

/* The follow ng nethod reads a SCPI definite block fromthe signal generator

and wites the contents to a file on your conputer. The trailing

Chapter 5 231

Creating and Downloading User-Data Files
Save and Recall Instrument State Files

new i ne character is NOT consuned by the read.*/

static public void ReadFil eBl ock(uint device, string fileName)
{
I/l Create the new, enpty data file.
FileStreamfs = new FileStrean(fil eName, Fil eMde. Create);
/1 Read the definite block header: #{lengthDatalLength}{dataLength}
uint retCount = 0O;
byte[] buf = new byte[10];
Vi sal nt er op. Read(devi ce, buf, 2, out retCount);
Vi sal nt er op. Read(devi ce, buf, (uint)(buf[1]-'0"), out retCount);
uint fileSize = U nt32. Parse(Encodi ng. ASCl | . Get String(buf, 0, (int)retCount));
/!l Read the file block fromthe signal generator
byte[] readBuf = new byte[TRANSFER BLOCK_SI ZE] ;
uint bytesRenmmining = fileSize;

while (bytesRenmining != 0)
{
uint bytesToRead = (bytesRemaini ng < TRANSFER _BLOCK_SI ZE) ?
byt esRenmai ni ng : TRANSFER_BLOCK_SI ZE;
Vi sal nt erop. Read(devi ce, readBuf, bytesToRead, out retCount);
fs.Wite(readBuf, 0, (int)retCount);
byt esRenmi ni ng -= ret Count;
}
/1 Done with file
fs.d ose();
}

/* The follow ng nethod wites the contents of the specified file to the
specified file in the formof a SCPI definite block. A newine is

NOT appended to the block and END i s not sent at the conclusion of the
wite. */

static public void WiteFileBl ock(uint device, string fil eNane)

{

/1 Make sure that the file exists, otherw se sends a null block

if (File.Exists(fileName))
{
FileStreamfs = new FileStrean(fil eName, Fil eMde. Open);
/1 Send the definite block header: #{lengthDatalLength}{dataLength}
string fileSize = fs.Length. ToString();
string fileSizeLength = fileSize.Length. ToString();

